一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于非負(fù)矩陣分解的彩色圖像質(zhì)量評價(jià)方法

徐海勇 郁梅 駱挺 呂亞奇 蔣剛毅

徐海勇, 郁梅, 駱挺, 呂亞奇, 蔣剛毅. 基于非負(fù)矩陣分解的彩色圖像質(zhì)量評價(jià)方法[J]. 電子與信息學(xué)報(bào), 2016, 38(3): 578-585. doi: 10.11999/JEIT150610
引用本文: 徐海勇, 郁梅, 駱挺, 呂亞奇, 蔣剛毅. 基于非負(fù)矩陣分解的彩色圖像質(zhì)量評價(jià)方法[J]. 電子與信息學(xué)報(bào), 2016, 38(3): 578-585. doi: 10.11999/JEIT150610
XU Haiyong, YU Mei, LUO Ting, Lü Yaqi, JIANG Gangyi. A Color Image Quality Assessment Method Based onNon-negative Matrix Factorization[J]. Journal of Electronics & Information Technology, 2016, 38(3): 578-585. doi: 10.11999/JEIT150610
Citation: XU Haiyong, YU Mei, LUO Ting, Lü Yaqi, JIANG Gangyi. A Color Image Quality Assessment Method Based onNon-negative Matrix Factorization[J]. Journal of Electronics & Information Technology, 2016, 38(3): 578-585. doi: 10.11999/JEIT150610

基于非負(fù)矩陣分解的彩色圖像質(zhì)量評價(jià)方法

doi: 10.11999/JEIT150610 cstr: 32379.14.JEIT150610
基金項(xiàng)目: 

國家自然科學(xué)基金 (U1301257, 61171163, 61271270, 61271021, 61311140262, 61501270),浙江省自然科學(xué)基金(LY14F010004, LY15F010005),浙江省重中之重學(xué)科開放基金

A Color Image Quality Assessment Method Based onNon-negative Matrix Factorization

Funds: 

The National Natural Science Foundation of China (U1301257, 61171163, 61271270, 61271021, 61311140262, 61501270), Zhejiang Provincial Natural Science Foundation of China (LY14F010004, LY15F010005), Open Fund of Zhejiang Provincial Key Academic Project (first level)

  • 摘要: 針對稀疏表示的圖像質(zhì)量評價(jià)模型都基于灰度圖像,缺少顏色信息,該文提出一種基于非負(fù)矩陣分解(NMF)的全參考彩色圖像質(zhì)量評價(jià)方法。首先,從自然彩色圖像中隨機(jī)采樣,得到訓(xùn)練樣本,利用非負(fù)矩陣分解,訓(xùn)練得到特征基矩陣,并經(jīng)過Schmidt正交化,構(gòu)建特征提取矩陣;其次,根據(jù)視覺顯著性模型,利用最大視覺顯著性和顯著性差值兩步驟選取視覺重要區(qū)域;最后,利用特征提取矩陣,得到低維的特征向量,并最終得到彩色圖像質(zhì)量評價(jià)值。實(shí)驗(yàn)結(jié)果表明,該文方法在LIVE, CSIQ和TID2008 3個(gè)圖像質(zhì)量評價(jià)庫上有很好的表現(xiàn)。3個(gè)圖像庫的平均結(jié)果顯示,該文方法的綜合表現(xiàn)優(yōu)于所有對比方法。這表明該文方法與主觀感知有更好的關(guān)聯(lián)度。
  • 蔣剛毅, 黃大江, 王旭, 等. 圖像質(zhì)量評價(jià)方法研究進(jìn)展[J]. 電子與信息學(xué)報(bào), 2010, 32(1): 219-226. doi: 10.3724/SP.J. 1146.2009.00091.
    JIANG Gangyi, HUANG Dajiang, WANG Xu, et al. Overview on image quality assessment methods[J]. Journal of Electronics Information Technology, 2010, 32(1): 219-226. doi: 10.3724/SP.J.1146.2009.00091.
    ZHANG M, MURAMASTSU C, ZHOU X, et al. Blind image quality assessment using the joint statistics of generalized local binary pattern[J]. IEEE Signal Processing Letters, 2015, 22(2): 207-210.
    宋洋, 郁梅, 蔣剛毅, 等. 基于人眼視覺特性的三維小波變換視頻質(zhì)量評價(jià)方法[J]. 光電子激光, 2014, 25(10): 1983-1988.
    SONG Yang, YU Mei, JIANG Gangyi, et al. 3D discrete wavelet transform based video quality metric combining with human visual characteristics[J]. Journal of OptoelectronicsLaser, 2014, 25(10): 1983-1988.
    MANTIUK R K, TOMASZEWSKA A, and MANTIUK R. Comparison of four subjective methods for image quality assessment[J]. Computer Graphics Forum, 2012, 31(8): 2478-2491.
    ZHANG L, SHEN Y, and LI H. VSI: a visual saliency-induced index for perceptual image quality assessment[J]. IEEE Transactions on Image Processing, 2014, 23(10): 4270-4281.
    HONG R, PAN J, Hao S, et al. Image quality assessment based on matching pursuit[J]. Information Sciences, 2014, 273: 196-211.
    陳勇, 樊強(qiáng), 帥鋒. 基于小波分析的圖像稀疏保真度評價(jià)[J]. 電子與信息學(xué)報(bào), 2015, 37(9): 2055-2061. doi: 10.11999/ JEIT150173.
    CHEN Yong, FAN Qiang, and SHUAI Feng. Sparse image fidelity evaluation based on wavelet analysis[J]. Journal of Electronics Information Technology, 2015, 37(9): 2055-2061. doi: 10.11999/JEIT150173.
    WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
    WANG Z, SIMONCELLI E P, and BOVIK A C. Multiscale structural similarity for image quality assessment[C]. IEEE Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2003: 1398-1402.
    SAMPAT M P, WANG Z, GUPTA S, et al. Complex wavelet structural similarity: A new image similarity index[J]. IEEE Transactions on Image Processing, 2009, 18(11): 2385-2401.
    WANG Z and LI Q. Information content weighting for perceptual image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(5): 1185-1198.
    SHEIKH H R and BOVIK A C. Image information and visual quality[J]. IEEE Transactions on Image Processing, 2006, 15(2): 430-444.
    CHANDLER D M and HEMAMI S S. VSNR: A wavelet-based visual signal-to-noise ratio for natural images[J]. IEEE Transactions on Image Processing, 2007, 16(9): 2284-2298.
    LIU A, LIN W, and NARWARIA M. Image quality assessment based on gradient similarity[J]. IEEE Transactions on Image Processing, 2012, 21(4): 1500-1512.
    ZHANG L, ZHANG L, MOU X Q, et al. FSIM: A feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(8): 2378-2386.
    GUHA T, NEZHADARYA E, and WARD R K. Sparse representation-based image quality assessment[J]. Signal Processing: Image Communication, 2014, 29(10): 1138-1148.
    MARTIN D, FOWLKES C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]. Proceedings of. Eighth IEEE International
    Conference on Computer Vision, Vancouver, Canada, 2001, 2: 416-423.
    LEE D D and SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755): 788-791.
    ZHANG L, GU Z, and LI H. SDSP: A novel saliency detection method by combining simple priors[C]. IEEE International Conference on Image Processing, Australia, 2013: 171-175.
    PONOMARENKO N, LUKIN V, ZELENSKY A, et al. TID2008A database for evaluation of full-reference visual quality assessment metrics[J]. Advances of Modern Radioelectronics, 2009, 10: 30-45.
    SHEIKH H R, BOVIK A C, and DE VECIANA G. An information fidelity criterion for image quality assessment using natural scene statistics[J]. IEEE Transactions on Image Processing, 2005, 14(12): 2117-2128.
    LARSON E C and CHANDLER D M. Most apparent distortion: full-reference image quality assessment and the role of strategy[J]. Journal of Electronic Imaging, 2010, 19(1): 011006.
  • 加載中
計(jì)量
  • 文章訪問數(shù):  1430
  • HTML全文瀏覽量:  135
  • PDF下載量:  480
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2015-05-25
  • 修回日期:  2015-11-09
  • 刊出日期:  2016-03-19

目錄

    /

    返回文章
    返回