一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

一種易于初始化的類卷積神經(jīng)網(wǎng)絡(luò)視覺跟蹤算法

李寰宇 畢篤彥 查宇飛 楊源

李寰宇, 畢篤彥, 查宇飛, 楊源. 一種易于初始化的類卷積神經(jīng)網(wǎng)絡(luò)視覺跟蹤算法[J]. 電子與信息學(xué)報(bào), 2016, 38(1): 1-7. doi: 10.11999/JEIT150600
引用本文: 李寰宇, 畢篤彥, 查宇飛, 楊源. 一種易于初始化的類卷積神經(jīng)網(wǎng)絡(luò)視覺跟蹤算法[J]. 電子與信息學(xué)報(bào), 2016, 38(1): 1-7. doi: 10.11999/JEIT150600
LI Huanyu, BI Duyan, ZHA Yufei, YANG Yuan. An Easily Initialized Visual Tracking Algorithm Based on Similar Structure for Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2016, 38(1): 1-7. doi: 10.11999/JEIT150600
Citation: LI Huanyu, BI Duyan, ZHA Yufei, YANG Yuan. An Easily Initialized Visual Tracking Algorithm Based on Similar Structure for Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2016, 38(1): 1-7. doi: 10.11999/JEIT150600

一種易于初始化的類卷積神經(jīng)網(wǎng)絡(luò)視覺跟蹤算法

doi: 10.11999/JEIT150600 cstr: 32379.14.JEIT150600
基金項(xiàng)目: 

國家自然科學(xué)基金(61202339, 61472442),航空科學(xué)基金(20131996013)

An Easily Initialized Visual Tracking Algorithm Based on Similar Structure for Convolutional Neural Network

Funds: 

The National Natural Science Foundation of China (61202339, 61472442), Aeronautical Science Foundation of China (20131996013)

  • 摘要: 該文針對視覺跟蹤中運(yùn)動(dòng)目標(biāo)的魯棒性跟蹤問題,基于主成分分析(PCA)和卷積神經(jīng)網(wǎng)絡(luò)(CNN),提出一種易于初始化的類CNN提取深度特征的視覺跟蹤算法。該算法首先利用仿射變換對原始圖像進(jìn)行處理,然后對歸一化尺寸的圖像進(jìn)行分層PCA學(xué)習(xí),將學(xué)習(xí)得到的PCA特征向量作為CNN結(jié)構(gòu)中的各階濾波器,完成特征提取網(wǎng)絡(luò)的初始化,再利用特征提取網(wǎng)絡(luò)獲取目標(biāo)的深層次表達(dá)。最后結(jié)合粒子濾波,利用一個(gè)簡單的邏輯回歸分類器通過分類估計(jì)實(shí)現(xiàn)目標(biāo)跟蹤。結(jié)果表明,利用這種易于初始化的CNN提取到的深度特征能夠有效地區(qū)分目標(biāo)和背景,具有很好的可區(qū)分性,提出的視覺跟蹤算法對光照變化、尺度變化、遮擋、旋轉(zhuǎn)和攝像機(jī)抖動(dòng)等都具有良好的適應(yīng)性,在許多視頻序列上表現(xiàn)出了較好的魯棒性和準(zhǔn)確性。
  • LI X, HU W M, and SHEN C H. A survey of appearance models in visual object tracking[J]. ACM Transactions on Intelligent Systems and Technology, 2013, 4(4): 5801-5848.
    侯志強(qiáng), 黃安奇, 余旺盛, 等. 基于局部分塊和模型更新的視覺跟蹤算法[J]. 電子與信息學(xué)報(bào), 2015, 37(6): 1357-1364. doi: 10.11999/JEIT141134.
    HOU Zhiqiang, HUANG Anqi, YU Wangsheng, et al. Visual object tracking method based on local patch model and model update[J]. Journal of Electronics Information Technology, 2015, 37(6): 1357-1364. doi: 10.11999/ JEIT141134.
    李寰宇, 畢篤彥, 楊源, 等. 基于深度特征表達(dá)與學(xué)習(xí)的視覺跟蹤算法研究[J]. 電子與信息學(xué)報(bào), 2015, 37(9): 2033-2039. doi: 10.11999/JEIT150031.
    LI Huanyu, BI Duyan, YANG Yuan, et al. Research on visual tracking algorithm based on deep feature expression and learning[J]. Journal of Electronics Information Technology, 2015, 37(9): 2033-2039. doi: 10.11999/JEIT150031.
    HINTON G E and SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
    SUN Y, WANG X, and TANG X. Deep learning face representation from predicting 10,000 classes[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, 2014: 1891-1898.
    ABDEL-HAMID O, MOHAMED A R, JIANG H, et al. Convolutional neural networks for speech recognition[J].ACM Transactions on Audio, Speech, and Language Processing, 2014, 22(10): 1533-1545.
    OUYANG W, CHU X, and WANG X. Multi-source deep learning for human pose estimation[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, 2014: 2337-2344.
    EVGENY A S, DENIS M T, and SERGE N A. Comparison of regularization methods for imagenet classification with deep convolutional neural networks[J]. AASRI Procedia, 2014, 6(8): 89-94.
    ZHOU S S, CHEN Q C, and WANG X L. Convolutional deep networks for visual data classification[J]. Neural Processing Letters, 2013, 38(11): 17-27.
    WANG N Y and YEUNG D Y. Learning a deep compact image representation for visual tracking[C]. Advances in Neural Information Processing Systems, Lake Tahoe, 2013: 125-137.
    LI H X, LI Y, and FATIH P. Deep track: learning discriminative feature representations by convolutional neural networks for visual tracking[C]. Proceedings of the British Machine Vision Conference, Nottingham, 2014: 110-119.
    BALDI P and HORNIK K. Neural networks and principal component analysis: learning from examples without local minima[J]. Neural Networks, 1989, 2(1): 53-58.
    P?EREZ P, HUE C, and VERMAAK J. Color-based probabilistic tracking[C]. European Conference on Computer Vision, Copenhagen, 2002: 661-675.
    ZHANG K H, ZHANG L, and YANG M H. Real-time compressive tracking[C]. European Conference on Computer Vision, Florence, 2012: 864-877.
    SEVILLA-LARA L and LEARNED-MILLER E. Distribution fields for tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Colorado, 2011: 1910-1917.
    ADAM A, RIVLIN E, and SHIMSHONI I. Robust fragments-based tracking using the integral histogram[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Colorado, 2006: 798-805.
    ROSS D, LIM Jongwoo, and LIN Rueisung. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(1): 125-141.
    COMANICIU D, RAMESH V, and MEER P. Kernel-based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577
    SHAUL O, AHARON B H, and DAN L. Locally orderless tracking[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, 2012: 1940-1947.
    LIU Baiyang, HUANG Junzhou, and YANG Lin. Robust tracking using local sparse appearance model and K-selection[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Colorado, 2011: 1313-1320.
    HARE S, SAFFARI A, and TORR P H S. Struck: Structured output tracking with kernels[C]. Proceedings of IEEE International Conference on Computer Vision, Colorado, 2011: 263-270.
    JUNSEOK K and KYOUNG M. Tracking by sampling trackers[C]. Proceedings of IEEE International Conference on Computer Vision, Colorado, 2011: 1195-1202.
    EVERINGHAM M, VAN GODL L, WILLIAMS C, et al. The pascal Visual Object Classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338.
  • 加載中
計(jì)量
  • 文章訪問數(shù):  2174
  • HTML全文瀏覽量:  174
  • PDF下載量:  4285
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2015-05-21
  • 修回日期:  2015-08-28
  • 刊出日期:  2016-01-19

目錄

    /

    返回文章
    返回