面向智能電網(wǎng)架空線的傳感器故障容忍機(jī)制
doi: 10.11999/JEIT150576 cstr: 32379.14.JEIT150576
基金項(xiàng)目:
國(guó)家863計(jì)劃項(xiàng)目(2012AA050801),國(guó)家自然科學(xué)基金(61121061)
Fault Tolerance Mechanism for Sensors Monitoring Overhead Transmission Line in Smart Grid
Funds:
The National 863 Program of China (2012AA050801), The National Natural Science Foundation of China (61121061)
-
摘要: 在配用電網(wǎng)絡(luò)全網(wǎng)的監(jiān)控過(guò)程中,桿塔等設(shè)施的狀態(tài)監(jiān)測(cè)與故障容忍成為電力系統(tǒng)亟待解決的問(wèn)題?,F(xiàn)有的監(jiān)控系統(tǒng)由于網(wǎng)絡(luò)線性拓?fù)浣Y(jié)構(gòu)等限制,故障發(fā)生時(shí)無(wú)法及時(shí)維護(hù),影響到電力生產(chǎn)業(yè)務(wù),易造成電力重大事故。該文面向利用傳感器監(jiān)控電網(wǎng)架空線的背景,提出一個(gè)針對(duì)傳感器部署的故障容忍機(jī)制。首先,依據(jù)N-x原則等,最小化冗余備份節(jié)點(diǎn)和無(wú)線模塊的數(shù)量,達(dá)到成本最小化的目的。其次,綜合考慮時(shí)延約束、N-x原則的數(shù)量約束等構(gòu)建數(shù)學(xué)優(yōu)化模型。基于該模型,利用聚類合并思想,構(gòu)建了一個(gè)面向智能電網(wǎng)架空線的傳感器故障容忍機(jī)制。最后,仿真實(shí)驗(yàn)證明,以此機(jī)制部署的傳感器監(jiān)測(cè)網(wǎng)絡(luò)能夠在成本最小化的基礎(chǔ)上,有效地容忍故障。
-
關(guān)鍵詞:
- 智能電網(wǎng) /
- 故障容忍 /
- 無(wú)線傳感器網(wǎng) /
- 遺傳算法
Abstract: In the process of monitoring and controlling power distribution network, condition monitoring and fault tolerance of towers and other facilities become an urgent problem in power system. The existing monitoring system can not maintain transmission of distributed power timely when fault occurs because of the limitations such as linear topology. Therefore, it may result in serious power system accidents, influencing production business of electric power. Based on the background of using sensors to monitor overhead transmission line, a fault tolerance mechanism for sensors deployment is proposed. First, according to N-x principle, the number of backup nodes and cellular-enabled modules is minimized to achieve the goal of cost minimization. Second, the number constraint of N-x principle and delay constraint is integrated into establishing a mathematical optimization model. Based on this model and by using clustering algorithm, a fault tolerance mechanism is built for sensors monitoring overhead transmission line in smart grid. Finally, the simulation experiment shows that sensor monitoring network deployed with this mechanism can tolerate the faults on the basis of minimized cost effectively.-
Key words:
- Smart grid /
- Fault tolerance /
- Wireless Sensor Network (WSN) /
- Genetic algorithms
-
FATEH B, GOVINDARASU M, and AJJARAPU V. Wireless network design for transmission line monitoring in smart grid[J]. IEEE Transactions on Smart Grid, 2013, 4(2): 1076-1086. [2] YANG Y, DIVAN D, HARLEY R G, et al. Design and implementation of power line sensornet for overhead transmission lines[C]. Power Energy Society General Meeting, PES'09, IEEE, Calgary, 2009: 1-8. SALVADORI F, GEHRKE C S, de OLIVEIRA A C, et al. Smart grid infrastructure using a hybrid network architecture[J]. IEEE Transactions on Smart Grid, 2013, 4(3): 1630-1639. VENKATESAN L, SHANMUGAVEL S, and SUBRAMANIAM C. A survey on modeling and enhancing reliability of wireless sensor network[J]. Wireless Sensor Network, 2013, 5(3): 41-51. 劉麗萍, 王智, 孫優(yōu)賢. 無(wú)線傳感器網(wǎng)絡(luò)部署及其覆蓋問(wèn)題研究[J]. 電子與信息學(xué)報(bào), 2006, 28(9): 1752-1757. LIU Liping, WANG Zhi, and SUN Youxian. Survey on coverage in wireless sensor networks deployment[J]. Journal of Electronics Information Technology, 2006, 28(9): 1752-1757. FANG X, MISRA S, XUE G, et al. Smart grid The new and improved power grid: A survey[J]. IEEE Communications Surveys Tutorials, 2012, (4): 944-980. 尹榮榮, 劉彬, 劉浩然等. 基于節(jié)點(diǎn)綜合故障模型的無(wú)線傳感器網(wǎng)絡(luò)容錯(cuò)拓?fù)淇刂品椒╗J]. 電子與信息學(xué)報(bào), 2012, 34(10): 2375-2381. doi: 10.3724/SP.J.1146.2012.00361. YIN Rongrong, LIU Bin, LIU Haoran, et al. The fault- tolerant topology control approach in wireless eensor networks based on integrated fault model of node[J]. Journal of Electronics Information Technology, 2012, 34(10): 2375-2381. doi: 10.3724/SP.J.1146.2012.00361. 劉彬, 董明如, 劉浩然, 等. 基于綜合故障的無(wú)線傳感器網(wǎng)絡(luò)無(wú)標(biāo)度容錯(cuò)拓?fù)淠P脱芯縖J]. 物理學(xué)報(bào), 2014, 63(17): 170506-170506. LIU Bin, DONG Mingru, LIU Haoran, et al. A scale-free fault tolerant topology model in wireless sensor network for toleration of comprehensive fault[J]. Acta Physica Sinica, 2014, 63(17): 170506-170506. MAHAPATRO A and KHILAR P M. Fault diagnosis in wireless sensor networks: a survey[J]. IEEE Communications Surveys Tutorials, 2013, 15(4): 2000-2026. RUI Yun, BU Z, TANG Liang, et al. A reverse transmission mechanism for surveillance network in smart grid[J]. IEEE Conference on Computer Communications Workshops, 2013, 12(11): 61-66. WU YC, CHEUNG LF, LUI KS, et al. Efficient communication of sensors monitoring overhead transmission lines[J]. IEEE Transactions on Smart Grid, 2012, 3(3): 1130-1136. SHORTLE J, REBENNACK S, and GLOVER F W. Transmission-capacity expansion for minimizing blackout probabilities[J]. IEEE Transactions on Power Systems, 2014, 29(1): 43-52. HUNG K S, LEE W K, LI V O K, et al. On wireless sensors communication for overhead transmission line monitoring in power delivery systems[C]. 2010 First IEEE International Conference on Smart Grid Communications, Gaithersburg, 2010: 309-314. CORMEN T H, LEISERSON C E, RIVEST R, et al. Introduction to Algorithms[M]. 3rd Edition. The MIT Press, 2009: 703-704. MELIOPOULOS A P S, COKKINIDES G J, MOHAGHEGHI S, et al. A laboratory setup of a power system scaled model for testing and validation of EMS applications[C]. IEEE Conference on Bucharest Powertech, Bucharest, 2009: 1-8. XIA J, YU K, YUN C, et al. A novel mechanism for surveillance transmission in smart grid[C]. IEEE International Conference on Smart Grid Engineering, Oshawa, 2012: 1-8. -
計(jì)量
- 文章訪問(wèn)數(shù): 1509
- HTML全文瀏覽量: 161
- PDF下載量: 509
- 被引次數(shù): 0