基于子空間旋轉(zhuǎn)變換的低復(fù)雜度波達(dá)角估計(jì)算法
doi: 10.11999/JEIT150539 cstr: 32379.14.JEIT150539
-
2.
(哈爾濱工業(yè)大學(xué) 哈爾濱 150001) ②(哈爾濱工業(yè)大學(xué)(威海) 威海 264209)
國家自然基金(61501142),山東省自然科學(xué)基金(ZR2014FQ003),中國博士后科學(xué)基金(2015M571414),中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金(HIT.NSRIF.2016102)
Low-complexity DOA Estimation via Subspace Rotation Technique
-
2.
(Harbin Institute of Technology, Harbin 150001, China)
The National Natural Science Foundation of China (61501142), Shandong Provincial Natural Science Foundation (ZR2014FQ003), China Postdoctoral Science Foundation (2015M571414), The Fundamental Research Funds for the Central Universities (HIT.NSRIF.2016102)
-
摘要: 多重信號分選(MUltiple SIgnal Classification, MUSIC)算法是波達(dá)方向(Direction-Of-Arrival, DOA)估計(jì)的最重要算法之一,但龐大的計(jì)算量使其工程實(shí)用性大打折扣。為降低MUSIC的計(jì)算量,該文基于子空間旋轉(zhuǎn)(Subspace Rotation Technique, SRT)變換思想提出了一種高效改進(jìn)算法,即SRT-MUSIC算法。SRT-MUSIC利用秩虧特性對噪聲子空間矩陣按行分塊并以旋轉(zhuǎn)變換得到降維噪聲子空間,進(jìn)而基于該降維噪聲子空間與導(dǎo)向矢量的正交性構(gòu)造空間譜估計(jì)信號DOA。理論分析表明:SRT-MUSIC能有效避免空間譜搜索中的冗余運(yùn)算,從而成倍降低算法的計(jì)算量。對于大陣元、少信號情況,所提算法計(jì)算效率優(yōu)勢更為明顯。仿真實(shí)驗(yàn)證明了SRT-MUSIC的有效性和高效性。
-
關(guān)鍵詞:
- 波達(dá)方向估計(jì) /
- 多重信號分選 /
- 噪聲子空間旋轉(zhuǎn) /
- 低復(fù)雜度算法
Abstract: The MUltiple SIgnal Classification (MUSIC) algorithm is one of the most important techniques for Direction-Of-Arrival (DOA) estimate. However, this method is found expensive in practical applications, due to the heavy computational cost involved. To reduce the complexity, a novel efficient estimator based on Subspace Rotation Technique (STR) is proposed. The key idea is to divide the noise subspace matrix along its row direction into two sub-matrices, and perform STR to get a new rotated sub-noise subspace with reduced dimensions. As this rotated sub-noise subspace is also orthogonal to the signal subspace, a new cost function is finally derived to estimate DOAs. Theoretical analysis indicates that redundancy computations in spectral search are efficiently avoided by the proposed method as compared to MUSIC, especially in scenarios where large numbers of sensors are applied to locate small numbers of signals. Simulation results verify the effectiveness and efficiency of the new technique. -
SCHMIDT R O. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas Propagation, 1986, 34(3): 276-280. GU J F, ZHU W P, and SWAMY M N S. Joint 2-D DOA estimation via sparse L-shaped array[J]. IEEE Transactions on Signal Processing, 2015, 63(5): 1171-1182. 毛琳琳, 張群飛, 黃建國, 等. 基于互相關(guān)協(xié)方差矩陣的改進(jìn)多重信號分類高分辨波達(dá)方位估計(jì)方法[J]. 電子與信息學(xué)報(bào), 2015, 37(8): 1886-1891. doi: 10.11999/JEIT141208. MAO L L, ZHANG Q F, HUANG J G, et al. Improved multiple signal classification algorithm for direction of arrival estimation based on covariance matrix of cross-correlation[J]. Journal of Electronics Information Technology, 2015, 37(8): 1886-1891. doi: 10.11999/JEIT141208. LIU Z M and GUO F C. Azimuth and elevation estimation with rotating long-baseline interferometers[J]. IEEE Transactions on Signal Processing, 2015, 63(9): 2405-2419. REDDY W, MUBEEN M and NG B P. Reduced- complexity super-resolution DOA estimation with unknown number of sources[J]. IEEE Signal Processing Letters, 2015, 22(6): 772-776. ROEMER F, et al. Analytical performance assessment of multidimensional matrix- and tensor-based ESPRIT-type algorithms[J]. IEEE Transactions on Signal Processing, 2014, 62(10): 2611-2625. YAN F G, SHEN Y, and JIN M. Fast DOA estimation based on a split subspace decomposition on the array covariance matrix[J]. Signal Processing, 2015, 115(10): 1-8. 閆鋒剛, 王軍, 沈毅, 等. 基于半實(shí)值Capon的高效波達(dá)方向估計(jì)算法[J]. 電子與信息學(xué)報(bào), 2015, 37(4): 811-816. doi: 10.11999/JEIT141034. YAN F G, WANG J, SHEN Y, et al. Efficient direction- of-arrival estimation based on semi-real-valued capon[J]. Journal of Electronics Information Technology, 2015, 37(4): 811-816. doi: 10.11999/JEIT141034. CHENG Q, HUANG L, and SO H C. Improved unitary root- MUSIC for DOA estimation based on pseudo-noise resampling[J]. IEEE Signal Processing Letters, 2014, 21(2): 140-144. 蔡晶晶, 等. 強(qiáng)約束優(yōu)化降維MUSIC二維DOA估計(jì)[J]. 電子與信息學(xué)報(bào), 2014, 36(5): 113-118. doi: 10.3724/SP.J.1146. 2013.01127. CAI J J, et al. Two-dimensional DOA estimation using reduced-dimensional MUSIC algorithm with strong- constraint optimization[J]. Journal of Electronics Information Technology, 2014, 36(5): 113-118. doi: 10.3724/SP.J.1146. 2013.01127. HUA G, et al. Efficient two dimensional direction finding via auxiliary-variable manifold separation technique for arbitrary array structure[C]. IEEE International Conference on Communication Problem-solving (ICCP), Beijing, 2014, 532-537. RUBSAMEN M and GERSHMAN A B. Direction- of-arrival estimation for nonuniform sensor arrays: from manifold separation to Fourier domain MUSIC methods[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 588-599. YAN F G, JIN M, LIU S, et al. Real-valued MUSIC for efficient direction estimation with arbitrary array geometries [J]. IEEE Transactions on Signal Processing, 2014, 62(6): 1548-1560. GOLUB G H and ChARES VAN LOAN H. Matrix Computations[M]. Baltimore, MD: The Johns Hopkins University Press, 1996: 238-246. XU G and KAILATH T. Fast subspace decomposition[J]. IEEE Transactions on Signal Processing, 199, 42(3): 539-551. REN Q S and WILLIS A J. Fast root MUSIC algorithm[J]. Electronics Letters, 1997, 33(6): 450-451. ZHANH Q T. Probability of resolution of the MUSIC algorithm[J]. IEEE Transactions on Signal Processing, 1994, 43(4): 978-987. -
計(jì)量
- 文章訪問數(shù): 1673
- HTML全文瀏覽量: 185
- PDF下載量: 570
- 被引次數(shù): 0