一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于子空間旋轉(zhuǎn)變換的低復(fù)雜度波達(dá)角估計(jì)算法

閆鋒剛 齊曉輝 劉帥 沈毅 金銘

閆鋒剛, 齊曉輝, 劉帥, 沈毅, 金銘. 基于子空間旋轉(zhuǎn)變換的低復(fù)雜度波達(dá)角估計(jì)算法[J]. 電子與信息學(xué)報(bào), 2016, 38(3): 629-634. doi: 10.11999/JEIT150539
引用本文: 閆鋒剛, 齊曉輝, 劉帥, 沈毅, 金銘. 基于子空間旋轉(zhuǎn)變換的低復(fù)雜度波達(dá)角估計(jì)算法[J]. 電子與信息學(xué)報(bào), 2016, 38(3): 629-634. doi: 10.11999/JEIT150539
YAN Fenggang, QI Xiaohui, LIU Shuai, SHEN Yi, JIN Ming. Low-complexity DOA Estimation via Subspace Rotation Technique[J]. Journal of Electronics & Information Technology, 2016, 38(3): 629-634. doi: 10.11999/JEIT150539
Citation: YAN Fenggang, QI Xiaohui, LIU Shuai, SHEN Yi, JIN Ming. Low-complexity DOA Estimation via Subspace Rotation Technique[J]. Journal of Electronics & Information Technology, 2016, 38(3): 629-634. doi: 10.11999/JEIT150539

基于子空間旋轉(zhuǎn)變換的低復(fù)雜度波達(dá)角估計(jì)算法

doi: 10.11999/JEIT150539 cstr: 32379.14.JEIT150539
基金項(xiàng)目: 

國家自然基金(61501142),山東省自然科學(xué)基金(ZR2014FQ003),中國博士后科學(xué)基金(2015M571414),中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金(HIT.NSRIF.2016102)

Low-complexity DOA Estimation via Subspace Rotation Technique

Funds: 

The National Natural Science Foundation of China (61501142), Shandong Provincial Natural Science Foundation (ZR2014FQ003), China Postdoctoral Science Foundation (2015M571414), The Fundamental Research Funds for the Central Universities (HIT.NSRIF.2016102)

  • 摘要: 多重信號分選(MUltiple SIgnal Classification, MUSIC)算法是波達(dá)方向(Direction-Of-Arrival, DOA)估計(jì)的最重要算法之一,但龐大的計(jì)算量使其工程實(shí)用性大打折扣。為降低MUSIC的計(jì)算量,該文基于子空間旋轉(zhuǎn)(Subspace Rotation Technique, SRT)變換思想提出了一種高效改進(jìn)算法,即SRT-MUSIC算法。SRT-MUSIC利用秩虧特性對噪聲子空間矩陣按行分塊并以旋轉(zhuǎn)變換得到降維噪聲子空間,進(jìn)而基于該降維噪聲子空間與導(dǎo)向矢量的正交性構(gòu)造空間譜估計(jì)信號DOA。理論分析表明:SRT-MUSIC能有效避免空間譜搜索中的冗余運(yùn)算,從而成倍降低算法的計(jì)算量。對于大陣元、少信號情況,所提算法計(jì)算效率優(yōu)勢更為明顯。仿真實(shí)驗(yàn)證明了SRT-MUSIC的有效性和高效性。
  • SCHMIDT R O. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas Propagation, 1986, 34(3): 276-280.
    GU J F, ZHU W P, and SWAMY M N S. Joint 2-D DOA estimation via sparse L-shaped array[J]. IEEE Transactions on Signal Processing, 2015, 63(5): 1171-1182.
    毛琳琳, 張群飛, 黃建國, 等. 基于互相關(guān)協(xié)方差矩陣的改進(jìn)多重信號分類高分辨波達(dá)方位估計(jì)方法[J]. 電子與信息學(xué)報(bào), 2015, 37(8): 1886-1891. doi: 10.11999/JEIT141208.
    MAO L L, ZHANG Q F, HUANG J G, et al. Improved multiple signal classification algorithm for direction of arrival estimation based on covariance matrix of cross-correlation[J]. Journal of Electronics Information Technology, 2015, 37(8): 1886-1891. doi: 10.11999/JEIT141208.
    LIU Z M and GUO F C. Azimuth and elevation estimation with rotating long-baseline interferometers[J]. IEEE Transactions on Signal Processing, 2015, 63(9): 2405-2419.
    REDDY W, MUBEEN M and NG B P. Reduced- complexity super-resolution DOA estimation with unknown number of sources[J]. IEEE Signal Processing Letters, 2015, 22(6): 772-776.
    ROEMER F, et al. Analytical performance assessment of multidimensional matrix- and tensor-based ESPRIT-type algorithms[J]. IEEE Transactions on Signal Processing, 2014, 62(10): 2611-2625.
    YAN F G, SHEN Y, and JIN M. Fast DOA estimation based on a split subspace decomposition on the array covariance matrix[J]. Signal Processing, 2015, 115(10): 1-8.
    閆鋒剛, 王軍, 沈毅, 等. 基于半實(shí)值Capon的高效波達(dá)方向估計(jì)算法[J]. 電子與信息學(xué)報(bào), 2015, 37(4): 811-816. doi: 10.11999/JEIT141034.
    YAN F G, WANG J, SHEN Y, et al. Efficient direction- of-arrival estimation based on semi-real-valued capon[J]. Journal of Electronics Information Technology, 2015, 37(4): 811-816. doi: 10.11999/JEIT141034.
    CHENG Q, HUANG L, and SO H C. Improved unitary root- MUSIC for DOA estimation based on pseudo-noise resampling[J]. IEEE Signal Processing Letters, 2014, 21(2): 140-144.
    蔡晶晶, 等. 強(qiáng)約束優(yōu)化降維MUSIC二維DOA估計(jì)[J]. 電子與信息學(xué)報(bào), 2014, 36(5): 113-118. doi: 10.3724/SP.J.1146. 2013.01127.
    CAI J J, et al. Two-dimensional DOA estimation using reduced-dimensional MUSIC algorithm with strong- constraint optimization[J]. Journal of Electronics Information Technology, 2014, 36(5): 113-118. doi: 10.3724/SP.J.1146. 2013.01127.
    HUA G, et al. Efficient two dimensional direction finding via auxiliary-variable manifold separation technique for arbitrary array structure[C]. IEEE International Conference on Communication Problem-solving (ICCP), Beijing, 2014, 532-537.
    RUBSAMEN M and GERSHMAN A B. Direction- of-arrival estimation for nonuniform sensor arrays: from manifold separation to Fourier domain MUSIC methods[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 588-599.
    YAN F G, JIN M, LIU S, et al. Real-valued MUSIC for efficient direction estimation with arbitrary array geometries [J]. IEEE Transactions on Signal Processing, 2014, 62(6): 1548-1560.
    GOLUB G H and ChARES VAN LOAN H. Matrix Computations[M]. Baltimore, MD: The Johns Hopkins University Press, 1996: 238-246.
    XU G and KAILATH T. Fast subspace decomposition[J]. IEEE Transactions on Signal Processing, 199, 42(3): 539-551.
    REN Q S and WILLIS A J. Fast root MUSIC algorithm[J]. Electronics Letters, 1997, 33(6): 450-451.
    ZHANH Q T. Probability of resolution of the MUSIC algorithm[J]. IEEE Transactions on Signal Processing, 1994, 43(4): 978-987.
  • 加載中
計(jì)量
  • 文章訪問數(shù):  1673
  • HTML全文瀏覽量:  185
  • PDF下載量:  570
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2015-05-07
  • 修回日期:  2015-12-18
  • 刊出日期:  2016-03-19

目錄

    /

    返回文章
    返回