基于最大范數(shù)的低秩稀疏分解模型
doi: 10.11999/JEIT150468 cstr: 32379.14.JEIT150468
基金項目:
國家自然科學基金(61271294, 61472303)和中央高?;究蒲袠I(yè)務費專項資金(NSIY21)
Low-rank Sparse Decomposition Model Based on Max-norm
Funds:
The National Natural Science Foundation of China (61271294, 61472303)
-
摘要: 為了更好地解決高維數(shù)據(jù)矩陣低秩稀疏分解問題,該文提出以Max-范數(shù)凸化秩函數(shù)的Max極小化模型,并給出該模型的相應算法。在對新模型計算復雜性分析的基礎上,該文進一步提出了Max約束模型,改進模型不僅在分解問題中效果良好,且相應的投影梯度算法具有更強的時效性。實驗結(jié)果表明,該文提出的兩組模型對于低秩稀疏分解問題均行之有效。
-
關鍵詞:
- 圖像分解 /
- Max-范數(shù) /
- 投影梯度法
Abstract: In order to better solve the low-rank and sparse decomposition problem for high-dimensional data matrix, this paper puts forward a novel Max minimization model with Max-norm as the convex relaxation of the rank function, and provides the corresponding algorithm. Based on the complexity analysis on the novel model, an improved Max constraint model is further proposed, which not only has good performance in the decomposition problem but also can be solved with a fast projection gradient method. The experimental results show that the proposed two models are effective for low-rank sparse decomposition problem.-
Key words:
- Image decomposition /
- Max-norm /
- Projected Gradient Method (PGM)
-
Candes E J, Li Xiao-dong, Ma Yi, et al.. Robust principal component analysis?[J]. Journal of the ACM, 2011, 58(3): 11. Candes E J and Plan Y. Matrix completion with noise[J]. Proceedings of the IEEE, 2010, 98(6): 925-936. Chen Chong-yu, Cai Jian-fei, Lin Wei-si, et al.. Incremental low-rank and sparse decomposition for compressing videos captured by fixed cameras[J]. Journal of Visual Communication and Image Representation, 2015, 26(1): 338-348. Sheng Bi-yun, Yang Wan-kou, Zhang Bao-chang, et al.. A non-negative low rank and sparse model for action recognition [C]. Proceedings of the 6th Chinese Conference on Pattern Recognition, Changsha, China, 2014: 266-275. Li Sheng, Li Liang-yue, and Fu Yun. Low-Rank and Sparse Dictionary Learning[M]. Switzerland: Springer International Publishing, 2014: 61-85. 霍雷剛, 馮象初. 基于主成分分析和字典學習的高光譜遙感圖像去噪方法[J]. 電子與信息學報, 2014, 36(11): 2723-2729. Huo Lei-gang and Feng Xiang-chu. Denoising of hyperspectral remote sensing image based on principal component analysis and dictionary learning[J].? Journal of Electronics Information Technology, 2014, 36(11): 2723-2729. 張文娟, 馮象初. 非凸低秩稀疏約束的圖像超像素分割方法[J]. 西安電子科技大學學報, 2013, 40(5): 86-91. Zhang Wen-juan and Feng Xiang-chu. Image super-pixels segmentation method based on the non-convex low-rank and sparse constraints[J]. Journal of Xidian University, 2013, 40(5): 86-91. Fazel M. Matrix rank minimization with applications[D]. [Ph.D. dissertation], Stanford University, 2002. Srebro N and Shraibman A. Rank, Trace-norm and Max-norm [M]. Heidelberg: Springer Berlin Heidelberg, 2005: 545-560. Cai T and Zhou Wen-xin. A max-norm constrained minimization approach to 1-bit matrix completion[J]. The Journal of Machine Learning Research, 2013, 14(1): 3619-3647. Neyshabur B, Makarychev Y, and Srebro N. Clustering, hamming embedding, generalized lsh and the max norm [C]. Proceedings of the 25th International Conference on Algorithmic Learning Theory, Bled, 2014: 306-320. Forster J, Schmitt N, Simon H U, et al.. Estimating the optimal margins of embeddings in euclidean half spaces[J]. Machine Learning, 2003, 51(3): 263-281. 莊哲民, 章聰友, 楊金耀, 等. 基于灰度特征和自適應閾值的虛擬背景提取研究[J]. 電子與信息學報, 2015, 37(2): 346-352. Zhuang Zhe-min, Zhang Cong-you, Yang Jin-yao, et al.. Investigation on visual background extractor based on gray feature and adaptive threshold[J]. Journal of Electronics Information Technology, 2015, 37(2): 346-352. 張超, 吳小培, 呂釗. 基于獨立分量分析的運動目標檢測算法中對通道數(shù)選擇和觀測向量生成方式的實驗和分析[J]. 電子與信息學報, 2015, 37(1): 137-142. Zhang Chao, Wu Xiao-pei, and L Zhao. Experiments and analysis on observation vector generation and channel number selection in motion detection algorithm based on independent component analysis[J]. Journal of Electronics Information Technology, 2015, 37(1): 137-142. Salakhutdinov R and Srebro N. Collaborative filtering in a non-uniform world: learning with the weighted trace norm[C]. Electronic Proceedings of the Neural Information Processing Systems Conference, Vancouver, 2010: 2056-2064. Lee J, Recht B, Salakhutdinov R, et al.. Practical large-scale optimization for max-norm regularization[C]. Electronic Proceedings of the Neural Information Processing Systems Conference, Vancouver, 2010: 1297-1305. Shen Jie, Xu Huan, and Li Ping. Online optimization for max-norm regularization[C]. Electronic Proceedings of the Neural Information Processing Systems Conference, Montreal, 2014: 1718-1726. Linial N, Mendelson S, Schechtman G, et al.. Complexity measures of sign matrices[J]. Combinatorica, 2007, 27(4): 439-463. Boyd S, Parikh N, Chu E, et al.. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Learning, 2011, 3(1): 1-122. Shen Yuan, Wen Zai-wen, and Zhang Yin. Augmented lagrangian alternating direction method for matrix separation based on low-rank factorization[J]. Optimization Methods and Software, 2014, 29(2): 239-263. Hale E T, Yin Wo-tao, and Zhang Yin. Fixed-point continuation for Methodology and convergence[J]. SIAM Journal on Optimization, 2008, 19(3): 1107-1130. Lin Chih-jen. Projected gradient methods for nonnegative matrix factorization[J]. Neural Computation, 2007, 19(10): 2756-2779. Daubechies I, Fornasier M, and Loris I. Accelerated projected gradient method for linear inverse problems with sparsity constraints[J]. Journal of Fourier Analysis and Applications, 2008, 14(5/6): 764-792. -
計量
- 文章訪問數(shù): 1789
- HTML全文瀏覽量: 188
- PDF下載量: 1304
- 被引次數(shù): 0