一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

基于最大范數(shù)的低秩稀疏分解模型

王斯琪 馮象初 張瑞 李小平

王斯琪, 馮象初, 張瑞, 李小平. 基于最大范數(shù)的低秩稀疏分解模型[J]. 電子與信息學報, 2015, 37(11): 2601-2607. doi: 10.11999/JEIT150468
引用本文: 王斯琪, 馮象初, 張瑞, 李小平. 基于最大范數(shù)的低秩稀疏分解模型[J]. 電子與信息學報, 2015, 37(11): 2601-2607. doi: 10.11999/JEIT150468
Wang Si-qi, Feng Xiang-chu, Zhang Rui, Li Xiao-ping. Low-rank Sparse Decomposition Model Based on Max-norm[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2601-2607. doi: 10.11999/JEIT150468
Citation: Wang Si-qi, Feng Xiang-chu, Zhang Rui, Li Xiao-ping. Low-rank Sparse Decomposition Model Based on Max-norm[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2601-2607. doi: 10.11999/JEIT150468

基于最大范數(shù)的低秩稀疏分解模型

doi: 10.11999/JEIT150468 cstr: 32379.14.JEIT150468
基金項目: 

國家自然科學基金(61271294, 61472303)和中央高?;究蒲袠I(yè)務費專項資金(NSIY21)

Low-rank Sparse Decomposition Model Based on Max-norm

Funds: 

The National Natural Science Foundation of China (61271294, 61472303)

  • 摘要: 為了更好地解決高維數(shù)據(jù)矩陣低秩稀疏分解問題,該文提出以Max-范數(shù)凸化秩函數(shù)的Max極小化模型,并給出該模型的相應算法。在對新模型計算復雜性分析的基礎上,該文進一步提出了Max約束模型,改進模型不僅在分解問題中效果良好,且相應的投影梯度算法具有更強的時效性。實驗結(jié)果表明,該文提出的兩組模型對于低秩稀疏分解問題均行之有效。
  • Candes E J, Li Xiao-dong, Ma Yi, et al.. Robust principal component analysis?[J]. Journal of the ACM, 2011, 58(3): 11.
    Candes E J and Plan Y. Matrix completion with noise[J]. Proceedings of the IEEE, 2010, 98(6): 925-936.
    Chen Chong-yu, Cai Jian-fei, Lin Wei-si, et al.. Incremental low-rank and sparse decomposition for compressing videos captured by fixed cameras[J]. Journal of Visual Communication and Image Representation, 2015, 26(1): 338-348.
    Sheng Bi-yun, Yang Wan-kou, Zhang Bao-chang, et al.. A non-negative low rank and sparse model for action recognition [C]. Proceedings of the 6th Chinese Conference on Pattern Recognition, Changsha, China, 2014: 266-275.
    Li Sheng, Li Liang-yue, and Fu Yun. Low-Rank and Sparse Dictionary Learning[M]. Switzerland: Springer International Publishing, 2014: 61-85.
    霍雷剛, 馮象初. 基于主成分分析和字典學習的高光譜遙感圖像去噪方法[J]. 電子與信息學報, 2014, 36(11): 2723-2729.
    Huo Lei-gang and Feng Xiang-chu. Denoising of hyperspectral remote sensing image based on principal component analysis and dictionary learning[J].? Journal of Electronics Information Technology, 2014, 36(11): 2723-2729.
    張文娟, 馮象初. 非凸低秩稀疏約束的圖像超像素分割方法[J]. 西安電子科技大學學報, 2013, 40(5): 86-91.
    Zhang Wen-juan and Feng Xiang-chu. Image super-pixels segmentation method based on the non-convex low-rank and sparse constraints[J]. Journal of Xidian University, 2013, 40(5): 86-91.
    Fazel M. Matrix rank minimization with applications[D]. [Ph.D. dissertation], Stanford University, 2002.
    Srebro N and Shraibman A. Rank, Trace-norm and Max-norm [M]. Heidelberg: Springer Berlin Heidelberg, 2005: 545-560.
    Cai T and Zhou Wen-xin. A max-norm constrained minimization approach to 1-bit matrix completion[J]. The Journal of Machine Learning Research, 2013, 14(1): 3619-3647.
    Neyshabur B, Makarychev Y, and Srebro N. Clustering, hamming embedding, generalized lsh and the max norm [C]. Proceedings of the 25th International Conference on Algorithmic Learning Theory, Bled, 2014: 306-320.
    Forster J, Schmitt N, Simon H U, et al.. Estimating the optimal margins of embeddings in euclidean half spaces[J]. Machine Learning, 2003, 51(3): 263-281.
    莊哲民, 章聰友, 楊金耀, 等. 基于灰度特征和自適應閾值的虛擬背景提取研究[J]. 電子與信息學報, 2015, 37(2): 346-352.
    Zhuang Zhe-min, Zhang Cong-you, Yang Jin-yao, et al.. Investigation on visual background extractor based on gray feature and adaptive threshold[J]. Journal of Electronics Information Technology, 2015, 37(2): 346-352.
    張超, 吳小培, 呂釗. 基于獨立分量分析的運動目標檢測算法中對通道數(shù)選擇和觀測向量生成方式的實驗和分析[J]. 電子與信息學報, 2015, 37(1): 137-142.
    Zhang Chao, Wu Xiao-pei, and L Zhao. Experiments and analysis on observation vector generation and channel number selection in motion detection algorithm based on independent component analysis[J]. Journal of Electronics Information Technology, 2015, 37(1): 137-142.
    Salakhutdinov R and Srebro N. Collaborative filtering in a non-uniform world: learning with the weighted trace norm[C]. Electronic Proceedings of the Neural Information Processing Systems Conference, Vancouver, 2010: 2056-2064.
    Lee J, Recht B, Salakhutdinov R, et al.. Practical large-scale optimization for max-norm regularization[C]. Electronic Proceedings of the Neural Information Processing Systems Conference, Vancouver, 2010: 1297-1305.
    Shen Jie, Xu Huan, and Li Ping. Online optimization for max-norm regularization[C]. Electronic Proceedings of the Neural Information Processing Systems Conference, Montreal, 2014: 1718-1726.
    Linial N, Mendelson S, Schechtman G, et al.. Complexity measures of sign matrices[J]. Combinatorica, 2007, 27(4): 439-463.
    Boyd S, Parikh N, Chu E, et al.. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Learning, 2011, 3(1): 1-122.
    Shen Yuan, Wen Zai-wen, and Zhang Yin. Augmented lagrangian alternating direction method for matrix separation based on low-rank factorization[J]. Optimization Methods and Software, 2014, 29(2): 239-263.
    Hale E T, Yin Wo-tao, and Zhang Yin. Fixed-point continuation for Methodology and convergence[J]. SIAM Journal on Optimization, 2008, 19(3): 1107-1130.
    Lin Chih-jen. Projected gradient methods for nonnegative matrix factorization[J]. Neural Computation, 2007, 19(10): 2756-2779.
    Daubechies I, Fornasier M, and Loris I. Accelerated projected gradient method for linear inverse problems with sparsity constraints[J]. Journal of Fourier Analysis and Applications, 2008, 14(5/6): 764-792.
  • 加載中
計量
  • 文章訪問數(shù):  1789
  • HTML全文瀏覽量:  188
  • PDF下載量:  1304
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2015-04-22
  • 修回日期:  2015-07-08
  • 刊出日期:  2015-11-19

目錄

    /

    返回文章
    返回