基于分布式天線的全雙工中繼系統(tǒng)最大化和速率波束成形設(shè)計(jì)
doi: 10.11999/JEIT150450 cstr: 32379.14.JEIT150450
-
2.
(清華大學(xué)電子工程系 北京 100084) ②(清華大學(xué)信息科學(xué)與技術(shù)國(guó)家實(shí)驗(yàn)室 北京 100084) ③(中山大學(xué)信息科學(xué)與技術(shù)學(xué)院 廣州 510275)
國(guó)家973計(jì)劃項(xiàng)目(2012CB316002),國(guó)家863計(jì)劃項(xiàng)目(2014AA01 A707),國(guó)家重大專項(xiàng)(2014ZX03003003-002),國(guó)家自然科學(xué)基金(61201192)和華為科研合作
Sum-rate Maximizing Beamforming Design for Distributed-antenna Based Full-duplex Relay Systems
-
2.
(Department of Electronic Engineering, Tsinghua University, Beijing 100084, China)
The National 973 Program of China (2012CB 316002)
-
摘要: 基于分布式天線的全雙工中繼系統(tǒng)結(jié)合了全雙工中繼兩跳同時(shí)同頻傳輸?shù)哪芰头植际教炀€高效覆蓋的特性,為提升小區(qū)邊緣和嚴(yán)重陰影衰落區(qū)域的頻譜效率提供了一種有效途徑。在自干擾抵消非理想的多用戶場(chǎng)景下,利用分布式多天線波束成形可實(shí)現(xiàn)對(duì)系統(tǒng)中自干擾和多用戶干擾的聯(lián)合抑制。為此,該文首先建立了在各分布式天線節(jié)點(diǎn)獨(dú)立發(fā)射功率約束下最大化多用戶端到端和速率的最優(yōu)化系統(tǒng)模型,進(jìn)而提出一種雙層迭代算法,解決原問(wèn)題的非凸性求解難題。仿真結(jié)果驗(yàn)證了算法的有效性,表明在多用戶分布式天線全雙工中繼系統(tǒng)中,所提波束成形設(shè)計(jì)能夠有效抑制自干擾和多用戶干擾,顯著提高系統(tǒng)頻譜效率。Abstract: Distributed antenna based full-duplex relay system is capable of simultaneous transmission and reception in the same frequency band on two hops, and it provides uniform coverage for cell edge and deep shadow fading areas with increased spectral efficiency. In multiuser scenarios with non-ideal self interference cancellation, beamforming using multiple distributed antennas is proposed to suppress self interference and multiuser interference jointly. A system model for multiuser end-to-end sum-rate maximization under individual power constraints at distributed antennas is established first. Then, a dual-layer iterative algorithm is proposed to resolve the non-convexity of the problem. Simulation results validate the effectiveness of the proposal algorithm, showing that the proposed beamforming design can be used in distributed-antenna based full-duplex relay systems, to suppress both self interference and multiuser interference efficiently, and increase system spectral efficiency significantly.
-
Key words:
- Full-duplex relay /
- Distributed antenna /
- Beamforming /
- Interference suppression /
- Sum-rate
-
Laneman J N, Tse D N C, and Wornell G W. Cooperative diversity in wireless networks: efficient protocols and outage behavior[J]. IEEE Transactions on Information Theory, 2004, 50(12): 3062-3080. Xu W, Dong X, and Lu W S. Joint precoding optimization for multiuser multi-antenna relaying downlinks using quadratic programming[J]. IEEE Transactions on Communications, 2011, 59(5): 1228-1235. 李敏, 林敏. 同信道干擾條件下的多天線放大轉(zhuǎn)發(fā)中繼中斷概率分析[J]. 電子與信息學(xué)報(bào), 2015, 37(1): 163-168. Li Min and Lin Min. Outage probability analysis of dual-hop MIMO amplify-and-forward relaying with multiple co-channel interferences[J]. Journal of Electronics Information Technology, 2015, 37(1):163-168. Sabharwal A, Schniter P, Guo D, et al.. In-band full-duplex wireless: challenges and opportunities[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(9): 1637-1652. Liu G, Yu R, Ji H, et al.. In-band full-duplex relaying: A survey, research issues and challenges[J]. IEEE Communications Surveys Tutorials, 2015, 17(2): 500-524. 王俊, 趙宏志, 卿朝進(jìn), 等. 同時(shí)同頻全雙工場(chǎng)景中的射頻域自適應(yīng)干擾抵消[J]. 電子與信息學(xué)報(bào), 2014, 36(6): 1435-1440. Wang Jun, Zhao Hong-zhi, Qing Chao-jin, et al.. Adaptive self-interference cancellation at RF domain in co-frequency co-time full duplex systems[J]. Journal of Electronics Information Technology, 2014, 36(6): 1435-1440. Day B P, Margetts A R, Bliss D W, et al.. Full-duplex MIMO relaying: Achievable rates under limited dynamic range[J]. IEEE Journal on Selected Areas in Communications, 2012, 30(8): 1541-1553. Cirik A C, Rong Y, and Hua Y. Achievable rates of full-duplex MIMO radios in fast fading channels with imperfect channel estimation[J]. IEEE Transactions on Signal Processing, 2014, 62(15): 3874-3886. Taniguchi T and Karasawa Y. Design and analysis of MIMO multiuser system using full-duplex multiple relay nodes[C]. Proceedings of Wireless Days (WD), Dublin, 2012: 1-8. Jin H and Leung V C M. Performance analysis of full-duplex relaying employing fiber-connected distributed antennas[J]. IEEE Transactions on Vehicular Technology, 2014, 63(1): 146-160. Zhang X, Sun Y, Chen X, et al.. Distributed power allocation for coordinated multipoint transmissions in distributed antenna systems[J]. IEEE Transactions on Wireless Communications, 2013, 12(5): 2281-2291. Duarte M, Sabharwal A, Aggarwal V, et al.. Design and characterization of a full-duplex multiantenna system for WiFi networks[J]. IEEE Transactions on Vehicular Technology, 2014, 63(3): 1160-1177. Wang T and Vandendorpe L. Successive convex approximation based methods for dynamic spectrum management[C]. Proceedings of IEEE International Conference on Communications (ICC), Ottawa, 2012: 4061-4065. Nguyen D, Tran L N, Pirinen P, et al.. Precoding for full duplex multiuser MIMO systems: Spectral and energy efficiency maximization[J]. IEEE Transactions on Signal Processing, 2013, 61(16): 4038-4050. Liang Y, Veeravalli V V, and Poor H V. Resource allocation for wireless fading relay channels: max-min solution[J]. IEEE Transactions on Information Theory, 2007, 53(10): 3432-3453. Boyd S and Vandenberghe L. Convex Optimization [M]. New York, Cambridge University Press, 2004: 561-623. Stingl M. On the solution of nonlinear semidefinite programs by augmented Lagrangian methods[D]. [Ph.D. dissertation], Friedrich-Alexander University Erlangen-Nrnberg, 2006. Yuan Y. LTE-Advanced Relay Technology and Standardization[M]. New York, Springer Science Business Media, 2012: 9-38. -
計(jì)量
- 文章訪問(wèn)數(shù): 1476
- HTML全文瀏覽量: 142
- PDF下載量: 566
- 被引次數(shù): 0