不完全喬列斯基分解共軛梯度法在磁感應(yīng)成像三維有限元正問題中的應(yīng)用
doi: 10.11999/JEIT150437 cstr: 32379.14.JEIT150437
-
1.
(東北大學(xué)中荷生物醫(yī)學(xué)與信息工程學(xué)院 沈陽 110004) ②(東北大學(xué)信息科學(xué)與工程學(xué)院 沈陽 110004)
中央高校基本科研業(yè)務(wù)費專項(N130404004)
Incomplete Cholesky Conjugate Gradient Method for the Three- dimensional Forward Problem in Magnetic Induction Tomography Using Finite Element Method
-
1.
(Sino-Dutch Biomedical and Information Engineering School, Northeastern University, Shenyang 110004, China)
The Fundmental Reseach Funds for the Central Universities of China (N130404004)
-
摘要: 磁感應(yīng)成像(MIT)3維正問題中,直接求解法計算有限元方程組時,計算速度慢且因舍入誤差造成計算結(jié)果不正確。該文為了解決這一問題,采用不完全喬列斯基分解共軛梯度(ICCG)迭代求解法?;贏NSYS平臺建立有限元數(shù)值模型,采用ICCG法迭代求解。通過仿真實驗獲得設(shè)定收斂容差的最優(yōu)值。對仿真結(jié)果進行對比,與直接求解法、雅克比共軛梯度(JCG)法相比,ICCG法計算速度快、穩(wěn)健性高。計算結(jié)果表明ICCG法受網(wǎng)格粗細影響小,能夠正確求解磁感應(yīng)成像3維正問題。
-
關(guān)鍵詞:
- 磁感應(yīng)成像 /
- 不完全喬列斯基分解共軛梯度法 /
- 3維正問題 /
- 有限元法
Abstract: In 3D forward problem of Magnetic Induction Tomography (MIT), the problems are slow computation speeds and incorrect results due to round-off errors, when calculating the finite element equations with the direct method. Incomplete Cholesky Conjugate Gradient (ICCG) iteration method is used to solve these problems. Round-off errors are compensated by iteration method. An Finite-Element Model (FEM) is built based on the ANSYS software. The FEM equations are solved by the ICCG method. The optimal convergence tolerance value is calculated. Simulation result shows that the ICCG method has advantages in speed and stability compared with direct and Jacobi Conjugate Gradient (JCG) method. The results show that the ICCG method is not affected by meshing perturbation, it can solve the 3D forward problem of MIT correctly. -
WEI H Y and SOLEIMANI M. Electromagnetic tomography for medical and industrial applications: challenges and opportunities[J]. Proceedings of the IEEE, 2013, 101(3): 559-565. LU Ma, HUNT Andy, and SOLEIMANI M. Experimental evaluation of conductive flow imaging using magnetic induction tomography[J]. International Journal of Multiphase Flow, 2015, 72: 198-209. JIN Gui, SUN Jian, QIN Mingxin, et al. A new method for detecting cerebral hemorrhage in rabbits by magnetic inductive phase shift[J]. Biosensors and Bioelectronics, 2014, 52: 374-378. 王雷, 劉銳崗, 周偉, 等. 磁感應(yīng)斷層成像硬件系統(tǒng)與實驗的研究進展[J]. 醫(yī)療衛(wèi)生裝備, 2013, 34(2): 85-88. WANG L, LIU R G, ZHOU W, et al. Research progress of magnetic induction tomography system and experimental results[J]. Chinese Medical Equipment Journal, 2013, 34(2): 85-88. DARRER B J, WATSON J C, BARTLETT P, et al. Toward an automated setup for magnetic induction tomography[J]. IEEE Transactions on Magnetics, 2015, 51(1): 6500104. MERWA R, HOLLAUS K, BRANDSTATTER B, et al. Volumetric magnetic induction tomography[J]. Measurement Science and Technology, 2012, 23(5): 055401. MERWA R, HOLLAUS K, BRANDSTATTER B, et al. Numerical solution of the general 3D eddy current problem for magnetic induction tomography (spectroscopy)[J]. Physiological Measurement, 2003, 24: 545-554. HOLLAUS K, MAC, MERWA R, et al. Numerical simulation of the eddy current problem in magnetic induction tomography for biomedical applications by edge elements[J]. IEEE Transactions on Magnetics, 2004, 40(2): 623-626. 劉國強, 王濤, 蒙萌, 等. 用棱單元方法求解磁感應(yīng)成像正問題[J]. 中國生物醫(yī)學(xué)工程, 2006, 25(2): 163-165. LIU G Q, WANG T, MENG M, et al. Using edge element method to solve the forward problem in magnetic induction tomography[J]. China Medical Engineering, 2006, 25(2): 163-165. 何為, 宋曉棟, 張曉勇, 等. 正弦均勻磁場激勵磁感應(yīng)成像正問題的棱單元法. 重慶大學(xué)學(xué)報, 2012, 35(10): 159-164. HE W, SONG X D, ZHANG X Y, et al. The edge element method in the forward problem of magnetic induction tomography with homogeneous sinusoidal magnetic excitation[J]. Journal of Chongqing University, 2012, 35(10): 159-164. 柯麗, 趙璐璐, 杜強, 等. 顱腦血腫 MIT 渦流場仿真與分析[J]. 系統(tǒng)仿真學(xué)報, 2014, 26(3): 517-522. KE L, ZHAO L L, DU Q, et al. Simulation and analysis of cerebral hematoma eddy current field in magnetic induction tomography[J]. Journal of System Simulation, 2014, 26(3): 517-522. ZHAO Q, CHEN G, HAO J N, et al. Numerical approach for the sensitivity of a high-frequency magnetic induction tomography system based on boundary elements and perturbation method[J]. Measurement Science and Technology, 2013, 4: 074004. 蒙萌, 江凌彤, 李士強, 等. 三維磁共振磁感應(yīng)成像重建方法研究[J]. 中國生物醫(yī)學(xué)工程學(xué)報, 2008, 27(5): 650-653. MENG M, JIANG L T, LI S Q, et al. 3-D reconstruction algorithm of magnetic resonance magnetic induction tomography[J]. Chinese Journal of Biomedical Engineering, 2008, 27(5): 650-653. SOLEIMANI M, WILLIAM R, and LIONHEART B. Absolute conductivity reconstruction in magnetic induction tomography using a nonlinear method[J]. IEEE Transactions on Medical Imaging, 2006, 25(12): 1521-1530. SOLEIMANI1 M, LIONHEART W R B, PEYTON1 A J, et al. A three-dimensional inverse finite-element method applied to experimental eddy-current imaging Data[J]. IEEE Transactions on Magnetics, 2006, 42(5): 1560-1567. 林莘, 劉志剛. ICCG算法在SF6罐式高壓斷路器三維電場有限元計算中的應(yīng)用[J]. 中國電機工程學(xué)報, 2001, 21(2): 21-24. LIN X and LIU Z G. The application of ICCG algorithm in the three dimensional electric field calculation of SF6 tank-type circuit breaker[J]. Proceedings of the CSEE, 2001, 21(2): 21-24. 謝德馨, 楊仕友. 工程電磁場數(shù)值分析與綜合[M]. 北京: 機械工業(yè)出版社, 2008: 84-85. XIE D X and YANG S Y. Numerical Analysis and Synthesis of Engineering Electromagnetic Field[M]. Beijing: China Machine Press, 2008: 84-85. KAMEARI A. Symetric second order edge elements for triangles and terahedra[J]. IEEE Transactions on Magnetics, 1999, 35: 1394-1397. GRIFFITHS H, STEWART W R, and GOUGH W. Magnetic induction tomography a measuring system for biological tissues[J]. Annals New York Academy of Sciences, 1999, 20: 335-345. HERMANN S, HELMUT K L, and JAVIER R. Magnetic induction tomography: hardware for multi-frequency measurement in biological tissues[J]. Physiological Measurement, 2001, 22: 131-146. -
計量
- 文章訪問數(shù): 1084
- HTML全文瀏覽量: 189
- PDF下載量: 498
- 被引次數(shù): 0