基于小波變換及Otsu分割的農(nóng)田作物行提取
doi: 10.11999/JEIT150421 cstr: 32379.14.JEIT150421
-
1.
(浙江理工大學(xué)信息學(xué)院 杭州 310018) ②(浙江理工大學(xué)機(jī)械與自動(dòng)控制學(xué)院 杭州 310018)
國(guó)家自然科學(xué)基金(61272311),浙江省自然科學(xué)基金重點(diǎn)項(xiàng)目(LZ15F020004),機(jī)械工程浙江省高校重中之重學(xué)科和浙江理工大學(xué)重點(diǎn)實(shí)驗(yàn)室優(yōu)秀青年人才培養(yǎng)基金(ZSTUME01B17),計(jì)算機(jī)應(yīng)用創(chuàng)新重點(diǎn)學(xué)科研究生創(chuàng)新研究項(xiàng)目(XDY14003),浙江理工大學(xué)科研啟動(dòng)基金(13032156-Y),浙江理工大學(xué)521資助計(jì)劃項(xiàng)目
Crop Row Detection Based on Wavelet Transformation and Otsu Segmentation Algorithm
-
1.
(Department of Electronics and Informatics, Zhejiang Sci-Tech University, Hangzhou 310018, China)
-
2.
(Department of Electronics and Informatics, Zhejiang Sci-Tech University, Hangzhou 310018, China)
The National Natural Science Foundation of China (61272311), Zhejiang Provincial Natural Science Foundation (LZ15F020004), The Young Researchers Foundation of Zhejiang Provincial Top Key Academic Discipline of Mechanical Engineering and Zhejiang Sci-Tech University Key Laboratory (ZSTUME 01B17), Graduate Student Innovation Research Project of Computer Application Innovation Key Subject (XDY14003), Science Foundation of Zhejiang Sci-Tech University (ZSTU) (13032156-Y), 521 Project of Zhejiang Sci-Tech University
-
摘要: 基于機(jī)器視覺的田間車輛自動(dòng)導(dǎo)航是農(nóng)用車輛導(dǎo)航的熱門研究方向,但含較密集雜草的農(nóng)田作物行提取,目前依然是個(gè)難題。該文提出一種適用于密集雜草農(nóng)田的,主要基于頻率和顏色信息的農(nóng)田圖像分割算法。通過小波多分辨率分解后構(gòu)建的頻率總量指標(biāo),利用作物產(chǎn)生主頻信息的總量?jī)?yōu)勢(shì),結(jié)合作物行的交替及最大類間方差法、顏色模型分量變換,實(shí)現(xiàn)農(nóng)田雜草的去除,并通過最小二乘法擬合直線,實(shí)現(xiàn)農(nóng)田作物行提取。實(shí)驗(yàn)表明算法能有效克服密集雜草干擾,針對(duì) 像素大小圖像,單幅處理時(shí)間平均為132 ms。Abstract: Vision-based agricultural vehicle navigation has become a popular research area of automated guidance, however, crop row detection in high weeds field is still a challenging topic. An image segmentation method mainly based on frequency and color information is proposed to remove weeds. The algorithm is based on total frequency parameters, more total crop frequency, alternation regular of crop rows, Otsu method and color model transformation. The total frequency parameters are obtained from wavelet multi-resolution decomposition. The least square method is used in fitting straight line to detect the crop rows. Experiments show that the algorithm can effectively overcome the high weeds. The average processing time of a single pixels image is 132 ms.
-
Key words:
- Agriculture navigation /
- Crop rows /
- Wavelet transformation /
- Otsu
-
張柏華, 馬紅光, 孫新利, 等. 基于正交約束的導(dǎo)航接收機(jī)空時(shí)自適應(yīng)方法[J]. 電子與信息學(xué)報(bào), 2015, 37(4): 900-906. doi: 10.1199/JEIT140740. ZHANG Baihua, MA Hongguang, SUN Xinli, et al. Space time adaptive processing technique based on orthogonal constraint in navigation receiver[J]. Journal of Electronics Information Technology, 2015, 37(4): 900-906. doi: 10.1199/ JEIT140740. 姬長(zhǎng)英, 周俊. 農(nóng)業(yè)機(jī)械導(dǎo)航技術(shù)發(fā)展分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2014, 45(9): 44-54. JI Changying and ZHOU Jun. Technical analysis of the development of agricultural machinery navigation[J]. Transactions of the Chinese Society of Agricultural Machinery, 2014, 45(9): 44-54. 李駿揚(yáng), 金立左, 費(fèi)樹岷, 等. 基于多尺度特征表示的城市道路檢測(cè)[J]. 電子與信息學(xué)報(bào), 2014, 36(11): 2578-2585. doi: 10.3724/SP.J.1146.2014.00271. LI Junyang, JIN Lizuo, FEI Shumin, et al. Urban road detection based on multi-scale feature representation[J]. Journal of Electronics Information Technology, 2014, 36(11): 2578-2585. doi: 10.3724/SP.J.1146.2014.00271. 李盛輝, 田光兆, 姬長(zhǎng)英, 等. 自主導(dǎo)航農(nóng)業(yè)車輛的全景視覺多運(yùn)動(dòng)目標(biāo)識(shí)別跟蹤[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2015, 46(1): 1-7. LU Shenhui, TIAN Guangzhao, JI Changying, et al. Multiple moving objects tracking based on panoramic vision for autonomous navigation of agricultural vehicle[J]. Transactions of the Chinese Society of Agricultural Machinery, 2015, 46(1): 1-7. KISE M, ZHANG Q, and ROVIRA M F. A stereovision-based crop row detection method for tractor-automated guidance[J]. Biosystems Engineering, 2005, 90(4): 357-367. ASTRAND B and BAERVELDT A J. A vision based row-following system for agricultural field machinery[J]. Mechatronics, 2005, 15(2): 251-269. Leemans V and Destain M F. A computer -vision based precision seed drill guidance assistance[J]. Computers and Electronics in Agriculture, 2007, 59(1-2): 1-12. BAKKER T, WOUTERS H, ASSELT K V, et al. A vision based row detection system for sugar beet[J]. Computers and Electronics in Agriculture, 2008, 60(1): 87-95. 張志斌, 羅錫文, 周學(xué)成, 等. 基于Hough變換和Fisher準(zhǔn)則的壟線識(shí)別算法[J]. 中國(guó)圖象圖形學(xué)報(bào), 2007, 12(12): 2164-2168. ZHANG Zhibin, LUO Xiwen, ZHOU Xuecheng, et al. Crop rows detection based on Hough transform and fisher discriminant criterion function[J]. Journal of Image and Graphics, 2007, 12(12): 2164-2168. JI Ronghua and QI Lijun. A crop-row detection algorithm based on random hough transformation[J]. Mathematical and Computer Modelling, 2011, 54(3/4): 1016-1020. GUERRERO J M, GUIJARRO M, MONTALVO M, et al. Automatic expert system based on images for accuracy crop row detection in maize fields[J]. Expert Systems with Applications, 2013, 40(2): 656-664. 姜國(guó)權(quán), 王志衡, 趙翠君. 基于已知點(diǎn)的作物行檢測(cè)方法[J]. 應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報(bào), 2013, 21(5): 983-990. JIANG Guoquan, WANG Zhiheng, and ZHAO Cuijun. An algorithm of detecting crop rows based on known-points[J]. Journal of Basic Science and Engineering, 2013, 21(5): 983-990. 胡煉, 羅錫文, 張智剛, 等. 株間除草裝置橫向偏移量識(shí)別與作物行跟蹤控制[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2013, 29(14): 8-14. HU Lian, LUO Xiwen, ZHANG Zhigang, et al. Side-shift offset identification and control of crop row tracking for intra-row mechanical weeding[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(14): 8-14. MONTALVO M, PAJARES G, GUERRERO M, et al. Automatic detection of crop rows in maize fields with high weeds pressure[J]. Expert Systems with Applications, 2012, 39(15): 11889-11897. 韓永華, 汪亞明, 康鋒, 等. 基于小波多分辨率分解的農(nóng)田障礙物檢測(cè)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2013, 44(6): 215-221. HAN Yonghua, WANG Yaming, KANG Feng, et al. Detection of obstacles in farmland based on wavelet multi- resolution transform[J]. Transactions of the Chinese Society of Agricultural Machinery, 2013, 44(6): 215-221. JIANG G Q, WANG Z H, and LIU H M. Automatic detection of crop rows based on multi-ROIs[J]. Expert Systems with Applications, 2015, 42(5): 2429-2441. SYLVAIN J, GILLES R, XAVIER H, et al. In-field crop row phenotyping from 3D modeling performed using structure from motion[J]. Computers and Electronics in Agriculture, 2015, 110(1): 70-77. -
計(jì)量
- 文章訪問數(shù): 1792
- HTML全文瀏覽量: 258
- PDF下載量: 430
- 被引次數(shù): 0