一種基于保角相位的圖像邊緣檢測新方法
doi: 10.11999/JEIT150364 cstr: 32379.14.JEIT150364
基金項(xiàng)目:
國家科技支撐計(jì)劃基金(2014BAF07B01)和中國紡織工業(yè)聯(lián)合會科技項(xiàng)目(2014066)
A New Approach for Image Edge Detection Based on Conformal Phase
Funds:
The National Science Technology Support Program of China (2014BAF07B01)
-
摘要: 為了提高邊緣檢測精確度與抗噪性能,該文提出一種基于保角相位的圖像邊緣檢測新方法。該方法首先利用保角單演信號能夠表達(dá)不同本征維數(shù)的圖像局部結(jié)構(gòu)的特點(diǎn),采用指數(shù)函數(shù)計(jì)算相位偏差,有效地抑制了相位一致模型邊緣檢測中產(chǎn)生的偽邊緣和噪聲,提高了邊緣檢測的精確度;其次,利用Poisson核在空域中有解析表示的優(yōu)勢,降低了算法復(fù)雜度。仿真實(shí)驗(yàn)結(jié)果表明,與現(xiàn)有的相位一致性圖像邊緣檢測方法相比,該方法提取的圖像邊緣更精確、更完整、更均勻,對噪聲具有更好的魯棒性,同時(shí),計(jì)算復(fù)雜度較低。Abstract: To improve the image edge detection accuracy and anti-noise performance, a new approach for image edge detection based on conformal phase is proposed. Firstly, the proposed approach can effectively improve the precision of edge detection and restrain the false edge and noise by using respectively the conformal monogenic signal which could express local structure of the image with different intrinsic dimensions and an exponential function to calculate the phase deviation. Secondly, it can reduce the complexity of the algorithm by taking advantage of the Poisson kernel of existence of analytic representation in spatial domain. To demonstrate the advantages, the proposed approach is compared with the existing methods?of phase congruency based edge?detection. The simulation experiment results show that the proposed approach can extract image edge more accurately, more completely, and more uniformly, with better robustness to noise and lower computational complexity.
-
Molina C, Baets B, and Bustince H. A framework for edge detection based on relief functions[J]. Information Sciences, 2014, 278(10): 127-140. Ray K. Unsupervised edge detection and noise detection from a single image[J]. Pattern Recognition, 2013, 46(8): 2067-2077. Hao Fei, Shi Jin-fei, Zhang Zhi-sheng, et al.. Canny edge detection enhancement by general auto-regression model and bi-dimensional maximum conditional entropy[J]. Optik, 2014, 125(15): 3946-3953. Xu Qian, Varadarajan S, Chakrabarti C, et al.. A distributed canny edge detector: algorithm and FPGA implementation[J]. IEEE Transactions on Image Processing, 2014, 23(7): 2944-2960. Morrone M, Ross J, Burr D, et al.. Mach bands are phase dependent[J]. Nature, 1986, 324(6094): 250-253. Morrone M and Owens R. Feature detection from local energy[J]. Pattern Recognition Letters, 1987, 6(5): 303-313. Kovesi P. Image features from phase congruency[J]. Videre: Journal of Computer Vision Research, 1999, 1(3): 1-26. Liu De-lei, Xu Yong, Quan Yu-hui, et al.. Reduced reference image quality assessment using regularity of phase congruency[J]. Signal Processing: Image Communication, 2014, 29(8): 844-855. Shojaeilangari S, Yau W, and Teoh E. A novel phase congruency based descriptor for dynamic facial expression analysis[J]. Pattern Recognition Letters, 2014, 49(11): 55-61. 李明, 李德仁, 范登科, 等. 利用PC-SIFT的多源光學(xué)衛(wèi)星影像自動(dòng)配準(zhǔn)方法[J]. 武漢大學(xué)學(xué)報(bào).(信息科學(xué)版), 2015, 40(1): 64-70. Li Ming, Li De-ren, Fan Deng-ke, et al.. An automatic PC-SIFT-based registration of multi-source images from optical satellites[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 64-70. Wang Li-juan, Zhang Chang-sheng, Liu Zi-yu, et al.. Image feature detection based on phase congruency by Monogenic filters[C]. The 26th Chinese Control and Decision Conference, Changsha, 2014: 2033-2038. Fleischmann O, Wietzke L, and Sommer G. Image analysis by conformal embedding[J]. Journal of Mathematical Imaging and Vision, 2011, 40(3): 305-325. Felsberg M and Sommer G. The monogenic signal[J]. IEEE Transactions on Signal Processing, 2001, 49(12): 3136-3144. Wietzke L, Sommer G, Schmaltz C, et al.. Differential geometry of monogenic signal representations[C]. Robot Vision: Second International Workshop, Auckland, 2008: 454-465. Wietzke L and Sommer G. The conformal monogenic signal[C]. Pattern Recognition: 30th DAGM Symposium, Munich, 2008: 527-536. Felsberg M. Low level image processing with the structure multivector[D]. [Ph.D. dissertation], Christian-Albert Kiel University, 2002: 95-100. Felsberg M and Sommer G. The monogenic scale-space: a unifying approach to phase-based image processing in scale-space[J]. Journal of Mathematical Imaging and Vision, 2004, 21(1/2): 5-26. Kovesi P. Phase preserving denoising of images[C]. The Australian Pattern Recognition Society Conference, Perth, 1999: 212-217. 羅丁, 趙榮椿, 慈林林, 等. 基于Hilbert濾波器對的相位一致性邊緣檢測方法[J]. 中國圖象圖形學(xué)報(bào), 2004, 9(2): 139-145. Luo Ding, Zhao Rong-chun, Ci Lin-lin, et al.. Phase congruency based edge detection by Hilbert filters[J]. Journal of Image and Graphics, 2004, 9(2): 139-245. -
計(jì)量
- 文章訪問數(shù): 1559
- HTML全文瀏覽量: 118
- PDF下載量: 748
- 被引次數(shù): 0