一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標(biāo)題
留言內(nèi)容
驗證碼

基于算子和局部正交約束的信號自適應(yīng)分解方法

衣曉蕾 彭思龍 欒世超

衣曉蕾, 彭思龍, 欒世超. 基于算子和局部正交約束的信號自適應(yīng)分解方法[J]. 電子與信息學(xué)報, 2015, 37(11): 2613-2620. doi: 10.11999/JEIT150318
引用本文: 衣曉蕾, 彭思龍, 欒世超. 基于算子和局部正交約束的信號自適應(yīng)分解方法[J]. 電子與信息學(xué)報, 2015, 37(11): 2613-2620. doi: 10.11999/JEIT150318
Yi Xiao-lei, Peng Si-long, Luan Shi-chao. An Approach of Adaptive Signal Separation Based on Operator and Locally Orthogonal Constraint[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2613-2620. doi: 10.11999/JEIT150318
Citation: Yi Xiao-lei, Peng Si-long, Luan Shi-chao. An Approach of Adaptive Signal Separation Based on Operator and Locally Orthogonal Constraint[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2613-2620. doi: 10.11999/JEIT150318

基于算子和局部正交約束的信號自適應(yīng)分解方法

doi: 10.11999/JEIT150318 cstr: 32379.14.JEIT150318
基金項目: 

國家自然科學(xué)基金(61032007, 61201375)

An Approach of Adaptive Signal Separation Based on Operator and Locally Orthogonal Constraint

Funds: 

The National Natural Science Foundation of China (61032007, 61201375)

  • 摘要: 該文利用局部正交約束,采用反向投影策略,提出一種基于算子的信號自適應(yīng)分解方法。該方法將輸入信號建模為多個基本信號和一個殘差信號之和,并且基本信號落在所定義算子的零空間中。通過仿真和實際信號的實驗,展示了所提算法對于解決信號處理中的模式混疊問題的可行性,有效性和實用性。
  • Huang N E , Shen Z, and Long S R. A new view of nonlinear water waves: the Hilbert spectrum[J]. Annual Review of Fluid Mechanics, 1999, 31: 417-457.
    Yu D J, Cheng J S, and Yang Y. Application of emd method and hilbert spectrum to the fault diagnosis of roller bearings[J]. Mechanical Systems and Signal Processing, 2005, 19(2): 259-270.
    Pai P F and Palazotto A N. Hht-based nonlinear signal processing method for parametric and non-parametric identification of dynamical systems[J]. International Journal of Mechanical Sciences, 2008, 50(12): 1619-1635.
    Huang N E, Shen Z, Long S R, et al.. The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proceedings of the Royal Society of London(series A),1998, 454(1971): 903-995.
    Peng S L and Hwang W L. Adaptive signal decomposition based on local narrow band signals[J]. IEEE Transactions on Signal Processing, 2008, 56(7): 2669-2676.
    Peng S L and Hwang W L. Null space pursuit: An operator-based approach to adaptive signal separation[J]. IEEE Transactions on Signal Processing, 2010, 58(5): 2475-2483.
    Mallat S and Zhang Z. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415.
    Vese L and Osher S. Modeling textures with total variation minimization and oscillating patterns in image processing[J]. Journal of Scientific Computing, 2003, 19(3): 553-572.
    Bobin J, Starck J L, Fadili J M, et al.. Morphological component analysis: an adaptive thresholding strategy[J]. IEEE Transactions on Image Processing, 2007, 16(11): 2675-2683.
    Yi X L, Hu X Y, and Peng S L. An operator-based and sparsity-based approach to adaptive signal separation[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, (ICASSP), Vancouver, BC, 2013: 6186-6190.
    Hu X Y, Peng S L, and Hwang W L. Multicomponent am-fm signal separation and demodulation with null space pursuit[J]. Signal, Image and Video Processing, 2013, 7(6): 1093-1102.
    肖維維, 欒衛(wèi)軍, 彭思龍. 基于三階線性微分算子的零空間追蹤算法[J]. 系統(tǒng)工程理論與實踐, 2013, 33(5): 1283-1288.
    Xiao Wei wei, Luan Wei jun, and Peng si long. Null space pursuit based on the three order linear differentialoperator[J]. Systems EngineeringTheory Practice, 2013, 33(5): 1283-1288.
    Hu X Y, Peng S L, and Hwang W L. An integral operator based adaptive signal separation approach[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, (ICASSP), Vancouver, BC, 2013: 6103-6107.
    Hu X Y, Peng S L, and Hwang W L. Adaptive integral operators for signal separation[J]. Signal Processing Letters, 2015, 22(9): 1383-1387.
    Wu Z H and Huang N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
    Deering R and Kaiser J F. The use of a masking signal to improve empirical mode decomposition[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, (ICASSP), Philadelphia, Pennsylvania, USA, 2005: 18-23.
  • 加載中
計量
  • 文章訪問數(shù):  1293
  • HTML全文瀏覽量:  196
  • PDF下載量:  623
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2015-03-17
  • 修回日期:  2015-06-12
  • 刊出日期:  2015-11-19

目錄

    /

    返回文章
    返回