基于算子和局部正交約束的信號自適應(yīng)分解方法
doi: 10.11999/JEIT150318 cstr: 32379.14.JEIT150318
-
1.
(中國科學(xué)院自動化研究所 北京 100190) ②(中國航空綜合技術(shù)研究所 北京 100028)
基金項目:
國家自然科學(xué)基金(61032007, 61201375)
An Approach of Adaptive Signal Separation Based on Operator and Locally Orthogonal Constraint
-
1.
(Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China)
-
2.
(China Aero-polytechnology Establishment, Beijing 100028, China)
Funds:
The National Natural Science Foundation of China (61032007, 61201375)
-
摘要: 該文利用局部正交約束,采用反向投影策略,提出一種基于算子的信號自適應(yīng)分解方法。該方法將輸入信號建模為多個基本信號和一個殘差信號之和,并且基本信號落在所定義算子的零空間中。通過仿真和實際信號的實驗,展示了所提算法對于解決信號處理中的模式混疊問題的可行性,有效性和實用性。
-
關(guān)鍵詞:
- 自適應(yīng)信號分解 /
- 局部正交 /
- 反向投影策略 /
- 零空間追蹤
Abstract: An operator-based approach for adaptive signal separation is proposed by using the locally orthogonal constraint and adopting back projection strategy. The approach adaptively separates a signal into additive subcomponents and a residual signal, where the subcomponents are in the null space of the operators. Experiments, including simulated signals and a real-life signal, demonstrate the feasibility, efficiency, and practicability of the proposed approach for solving the mode mixing phenomenon. -
Huang N E , Shen Z, and Long S R. A new view of nonlinear water waves: the Hilbert spectrum[J]. Annual Review of Fluid Mechanics, 1999, 31: 417-457. Yu D J, Cheng J S, and Yang Y. Application of emd method and hilbert spectrum to the fault diagnosis of roller bearings[J]. Mechanical Systems and Signal Processing, 2005, 19(2): 259-270. Pai P F and Palazotto A N. Hht-based nonlinear signal processing method for parametric and non-parametric identification of dynamical systems[J]. International Journal of Mechanical Sciences, 2008, 50(12): 1619-1635. Huang N E, Shen Z, Long S R, et al.. The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proceedings of the Royal Society of London(series A),1998, 454(1971): 903-995. Peng S L and Hwang W L. Adaptive signal decomposition based on local narrow band signals[J]. IEEE Transactions on Signal Processing, 2008, 56(7): 2669-2676. Peng S L and Hwang W L. Null space pursuit: An operator-based approach to adaptive signal separation[J]. IEEE Transactions on Signal Processing, 2010, 58(5): 2475-2483. Mallat S and Zhang Z. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415. Vese L and Osher S. Modeling textures with total variation minimization and oscillating patterns in image processing[J]. Journal of Scientific Computing, 2003, 19(3): 553-572. Bobin J, Starck J L, Fadili J M, et al.. Morphological component analysis: an adaptive thresholding strategy[J]. IEEE Transactions on Image Processing, 2007, 16(11): 2675-2683. Yi X L, Hu X Y, and Peng S L. An operator-based and sparsity-based approach to adaptive signal separation[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, (ICASSP), Vancouver, BC, 2013: 6186-6190. Hu X Y, Peng S L, and Hwang W L. Multicomponent am-fm signal separation and demodulation with null space pursuit[J]. Signal, Image and Video Processing, 2013, 7(6): 1093-1102. 肖維維, 欒衛(wèi)軍, 彭思龍. 基于三階線性微分算子的零空間追蹤算法[J]. 系統(tǒng)工程理論與實踐, 2013, 33(5): 1283-1288. Xiao Wei wei, Luan Wei jun, and Peng si long. Null space pursuit based on the three order linear differentialoperator[J]. Systems EngineeringTheory Practice, 2013, 33(5): 1283-1288. Hu X Y, Peng S L, and Hwang W L. An integral operator based adaptive signal separation approach[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, (ICASSP), Vancouver, BC, 2013: 6103-6107. Hu X Y, Peng S L, and Hwang W L. Adaptive integral operators for signal separation[J]. Signal Processing Letters, 2015, 22(9): 1383-1387. Wu Z H and Huang N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41. Deering R and Kaiser J F. The use of a masking signal to improve empirical mode decomposition[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, (ICASSP), Philadelphia, Pennsylvania, USA, 2005: 18-23. -
計量
- 文章訪問數(shù): 1293
- HTML全文瀏覽量: 196
- PDF下載量: 623
- 被引次數(shù): 0