多頻段典型地表的雙站雷達散射回波預測
doi: 10.11999/JEIT150301 cstr: 32379.14.JEIT150301
-
1.
(西安電子科技大學物理與光電工程學院 西安 710071) ②(中國電波傳播研究所 青島 266107)
基金項目:
國家自然科學基金(61172031)
Multi-band Bistatic Radar Echo Prediction from the Terrian Surfaces
-
1.
(School of Physics and Optoelectronic Engineering, Xidian University, Xi&rsquo
-
2.
(China Research Institute of Radiowave Propagation, Qingdao 266107, China)
Funds:
The National Natural Science Foundation of China (61172031)
-
摘要: 雙站雷達在反隱身、超低空防御方面具有獨特優(yōu)勢,但雙站測量裝置較為復雜,地表參數的準確獲取工作耗時耗力,且精度難以保證,地表雙站雷達散射數據極其匱乏。為解決上述問題,該文以L/S/X/Ku波段裸土、水泥地和粗糙沙地后向散射實測數據為例,忽略地表的精細結構,采用等效面散射模型和遺傳算法反演了各地表的等效介電常數和粗糙度參數,獲取其等效參數統(tǒng)計特征,實現對地表雙站雷達散射回波的預測。結果表明:該等效面散射模型保證了地表的后向和雙站散射回波預測精度;地表雙站雷達散射回波隨入射波頻率的增大而增大;隨散射角的增大先增大而后減小,并在鏡像方向出現最大值;隨散射方位角的增大,地表散射回波先減小而后增大,HH極化雙站散射回波的最小值一般出現在 方位角處,而VV極化雙站散射回波的最小值位置隨入射角的增大從 方位角向小角度方向偏移,并與入射波頻率、地表濕度以及粗糙度參數相關,該雙站散射特性可用于地表參數的反演以及目標的反隱身研究。Abstract: Bistatic radar has an advantage in the anti-stealth and low altitude defense, but the bistatic scattering data measured from the terrian surface are extremely scarce. To solve this problem, the genetic algorithms and the backscattering data from the soil, concrete and the sand surface in L/S/X/Ku band are used to retrieve the effective permittivity and the roughness parameters of the land, and then the bistatic scattering data are predicted. The research above proves that the land equivalent surface scattering model is effective. The bistatic scattering echo increases with frequency, and it first increases and then decreases along with the scattering angles, first decreases and then increases along with the scattering azimuth angles. The minimum value of the bistatic scattering echo always appears in the 90 degree azimuth angles for the HH polarization, and it shifts from 90 degree azimuth angles to the small angle direction for the VV polarization. And also it is related to incident frequency, the moisture and the roughness of land. The bistatic scattering characteristics of land surface can be used for the anti-stealth research and the inversion of the land parameters.
-
Schlund M, Poncet F V, Hoekman D H, et al.. Importance of bistatic SAR features from TanDEM-X for forest mapping and monitoring[J]. Remote Sensing of Environment, 2014, 151(8): 16-26. Gupta D K, Kumar P, Mishara V N, et al.. Bistatic measurements for the estimation of Rice crop variables using artifical neural network[J]. Advances in Space Reasearch, 2015(55): 1613-1623. Nashashibi A Y and Ulaby F T. MMW polarimetric radar bistatic scattering from a random surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(6): 1743-1755. Johnson J T and Ouellette J D. Polarization features in bistatic scattering from rough surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(3): 1616-1626. Ulaby F T, Moore R K, and Fung A K. Microwave Remote Sensing[M]. Massachusetts: Artech House, 1990, Vol. 2, Chapter 11. Panciera R, Tanase M A, Lowell K, et al.. Evaluation of IEM, Dubois, and Oh radar backscatter models using airborne L-band SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4966-4979. 張文吉, 張曉娟, 李芳. 分層土壤后向散射及其在深層土壤濕度探測中的應用[J]. 電子與信息學報, 2008, 30(9): 2107-2110. Zhang Wen-ji, Zhang Xiao-juan, and Li Fang. Backscattering from multilayer soil and its application to deep soil moisture estimation[J]. Journal of Electronics Information Technology, 2008, 30(9): 2107-2110. Tabatabaeenejad A, Burgin M, Duan X Y, et al.. P-band radar retrieval of subsurface soil moisture profile as a second-order polynomial: first AirMOSS results[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 645-658. Nashashibi A Y, Sarabandi K, Al-Zaid F A, et al.. An empirical model of volume scattering from dry sand-covered surfaces at millimeter-wave frequencies[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(6): 3673-3682. Sarabandi K, Li E S, and Nashashibi A. Modeling and measurements of scattering from road surfaces at millimeter-wave frequencies[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 45(11): 1679-1688. De Roo R D and Ulaby F T. Bistatic specular scattering from rough dielectric surfaces[J]. IEEE Transactions on Antennas and Propagation, 1994, 42(2): 220-231. Khadhra K B, Boerner T, Hounam D, et al.. Surface parameter estimation using bistatic polarimetric X-band measurements[J]. Progress In Electromagnetics Research B, 2012, 39: 197-223. Mattia F, Davidson M, Le T T, et al.. Joint statistical properties of RMS height and correlation length derived from multisite 1-m roughness measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(7): 1651-1658. Su Z, Trochp A, and De Troch F P. Remote sensing of bare surface soil moisture using EMAC/ESAR data[J]. International Journal of Remote Sensing, 1997, 18(10): 2105-2124. Baghdadi N, King C, Chanzy A, et al.. An empirical calibration of the integral equation model based on SAR data, soil moisture and surface roughness measurement over bare soils[J]. International Journal of Remote Sensing, 2002, 23(20): 4325-4340. Lievens H and Verhoest N E C. On the retrieval of soil moisture in wheat fields from L-band SAR based on water cloud modeling, the IEM, and effective roughness parameters [J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4): 740-744. 呂玉增, 劉永祥, 曹敏, 等. 基于遺傳算法的一維散射散射中心提取研究[J]. 電子與信息學報, 2006, 28(1): 36-40. L Yu-zeng, Liu Yong-xiang, Cao-min, et al.. 1-D scattering centers extraction technique based on genetic algorithm[J]. Journal of Electronics Information Technology, 2006, 28(1): 36-40. 嚴韜, 陳建文, 鮑拯. 基于改進遺傳算法的天波超視距雷達二維陣列稀疏優(yōu)化設計[J]. 電子與信息學報, 2014, 36(2): 3014-3020. Yan Tao, Chen Jian-wen, and Bao Zheng. Optimization design of sparse 2-D arrays for over-the-horizon radar (OTHR) based on improved genetic algorithm[J]. Journal of Electronics Information Technology, 2014, 36(2): 3014-3020. Wu T D, Chen K S, Shi Jian-cheng, et al.. A study of an AIEM model for bistatic scattering from randomly rough surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(9): 2584-2598. -