雙原型離散傅里葉變換調(diào)制濾波器組的快速設(shè)計(jì)方法
doi: 10.11999/JEIT150298 cstr: 32379.14.JEIT150298
基金項(xiàng)目:
國家自然科學(xué)基金(61371186, 61261032)和廣西區(qū)自然科學(xué)基金(2013GXNSFBA019264)
Fast Design of Double-prototype Discrete Fourier Transform Modulated Filter Banks
Funds:
The National Natural Science Foundation of China (61261032)
-
摘要: 針對大規(guī)模的離散傅里葉變換(DFT)調(diào)制濾波器組設(shè)計(jì)算法復(fù)雜度高的問題,該文提出一種基于無約束優(yōu)化的快速設(shè)計(jì)算法。該算法將兩個原型濾波器的設(shè)計(jì)問題歸結(jié)為一個無約束優(yōu)化問題,將濾波器組的傳遞失真,混疊失真以及原型濾波器阻帶能量的加權(quán)和作為目標(biāo)函數(shù)。進(jìn)而,采用雙迭代機(jī)制來求解該優(yōu)化問題。在單步迭代中,運(yùn)用矩陣求逆的等效條件和Toeplitz矩陣求逆的快速算法,顯著地降低了迭代的計(jì)算代價(jià)。仿真對比表明,與已有的設(shè)計(jì)算法相比,新算法計(jì)算代價(jià)低 ,可以得到整體性能更好的濾波器組,并且可以快速設(shè)計(jì)大規(guī)模的濾波器組。
-
關(guān)鍵詞:
- 調(diào)制濾波器組 /
- 離散傅里葉變換 /
- 原型濾波器 /
- 無約束優(yōu)化 /
- 雙迭代算法
Abstract: This paper presents an efficient algorithm to design high-complexity Discrete Fourier Transform (DFT) modulated filter bank with double-prototype. The algorithm is based on unconstrained optimization, where the design problem is formulated into an unconstrained optimization problem, whose objective function is the weighted sum of the transfer distortion, the aliasing distortion of the filter bank, and the stopband energy of the Prototype Filters (PFs). The optimization problem can be efficiently solved by utilizing the bi-iterative scheme. The matrix inverse identity and the fast algorithm for Toeplitz matrix inversion are employed to dramatically reduce the computational cost of the iterative procedure. Numerical examples and compared tests to show that compared with the existing methods, the proposed method possesses much lower computational cost and can be used to design large-scale filter bank with better overall performance. -
Vaidyanathan P P. Multirate Systems and Filter Banks[M]. Englewoo Cliffs: N.J.PrenticeHall, 1993: 188-272. 水冰, 史儀凱. 兩帶自適應(yīng) FIR 線性相位雙正交濾波器組設(shè)計(jì)[J]. 電子與信息學(xué)報(bào), 2006, 28(10): 1950-1954. Shui B and Shi Y K. Design of signal-adapted two-band biorthogonal linear phase filter banks[J]. Journal of Electronics Information Technology, 2006, 28(10): 1950-1954. Shui P L. Image denoising using 2-D oversampled DFT modulated filter banks[J]. IET Image Processing, 2009, 3(3): 163-173. Rajapaksha N, Madanayake A, and Bruton L T.2D space- time wave-digital multi-fan filter banks for signals consistingof multiple plane waves[J]. Multidimensional Systems and Signal Processing, 2014,25(1):17-39. Jain A and Goel A. A multiobjective optimization method for designing M-channel NPR cosine modulated filter bank for image compression[J]. Engineering, 2015, 7(2): 93-100. Kumar A, Pooja R, and Singh G K. Design and performance of closed form method for cosine modulated filter bank using different windows functions[J]. International Journal of Speech Technology, 2014, 17(4): 427-441. Wilbur M R, Davidson T N, and Reilly J P. Efficient design of oversampled NPR GDFT filter banks[J]. IEEE Transactions on Signal Processing, 2004, 52(7): 1947-1963. 蔣俊正, 王小龍, 水鵬朗. 一種設(shè)計(jì)DFT調(diào)制濾波器組的新算法[J]. 西安電子科技大學(xué)學(xué)報(bào), 2010, 37(4): 689-693. Jiang J Z, Wang X L, and Shui P L. Novel method for designing DFT modulated filter banks[J]. Journal of Xidian University, 2010, 37(4): 689-693. Jiang J Z, Zhou F, Ouyang S, et al.. Efficient design of very large-scale DFT modulated filter banks using Mth band condition[J]. IET Signal Processing, 2014, 8(4): 381-391. Qu D, Jiang T, and He Y. Prototype filter optimization to minimize stopband energy with NPR constraint for filter bank multicarrier modulation systems[J]. IEEE Transactions on Signal Processing, 2013, 61(1): 159-169. De Haan J M, Grbic N, Claesson I, et al.. Filter bank design for subband adaptive microphone arrays[J]. IEEE Transactions on Speech and Audio Processing, 2003, 11(1): 14-23. Schwerdtfeger T, Velten J, and Kummert A. A multidimensional wave digital filter bank for video-based motion analysis[J]. Multidimensional Systems and Signal Processing, 2014, 25(2): 295-311. 張飛, 邊東明, 張更新. 星載柔性轉(zhuǎn)發(fā)器中一種近似精確重構(gòu)原型濾波器的設(shè)計(jì)[J]. 電子與信息學(xué)報(bào), 2013, 35(3): 671-676. Zhang F, Bian D M, and Zhang G X. Design of a near perfect reconstruction prototype filter on flexible transponder for broadband satellite communications[J]. Journal of Electronics Information Technology, 2013, 35(3): 671-676. 李睿, 章毓晉, 譚華春. 自適應(yīng)去噪濾波器組合的訓(xùn)練與設(shè)計(jì)方法[J]. 電子與信息學(xué)報(bào), 2006, 28(7): 1165-1168. Li R, Zhang Y J, and Tan H C. A hybrid filter training and design method for adaptive noise cancellation[J]. Journal of Electronics Information Technology, 2006, 28(7): 1165-1168. Eghbali A and Johansson H. On efficient design of high-order filters with applications to filter banks and transmultiplexers with large number of channels[J]. IEEE Transactions on Signal Processing, 2014, 62(5): 1198-1209. Selesnick I W, Baraniuk R G, and Kingsbury N G. The dual-tree complex wavelet transform[J]. IEEE Signal Processing Magazine, 2005, 22(6): 123-151. Shui P L, Jiang J Z, and Wang X L. Design of oversampled double-prototype DFT modulated filter banks via bi-iterative second-order cone program[J]. Signal Processing, 2010, 90(5): 1597-1608. Trench W F. An algorithm for the inversion of finite Toeplitz matrices[J]. Journal of the Society for Industrial Applied Mathematics, 1964, 12(3): 515-522. -
計(jì)量
- 文章訪問數(shù): 1436
- HTML全文瀏覽量: 120
- PDF下載量: 651
- 被引次數(shù): 0