無線傳感器網(wǎng)絡(luò)中基于序列相關(guān)性的數(shù)據(jù)壓縮算法
doi: 10.11999/JEIT150280 cstr: 32379.14.JEIT150280
-
2.
(吉林大學(xué)通信工程學(xué)院 長(zhǎng)春 130012) ②(長(zhǎng)春工業(yè)大學(xué)計(jì)算機(jī)科學(xué)與工程學(xué)院 長(zhǎng)春 130012)
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61371092)
Data Compression Algorithm Based on Sequence Correlation for WSN
-
2.
(College of Communication Engineering, University of Jilin, Changchun 130012, China)
Funds:
The National Natural Science Foundation of China (61371092)
-
摘要: 無線傳感器網(wǎng)絡(luò)(WSN)中傳輸?shù)臄?shù)據(jù)具有相關(guān)性和冗余性。如何有效降低網(wǎng)絡(luò)中的數(shù)據(jù)量,延長(zhǎng)網(wǎng)絡(luò)生命周期,始終是WSN的研究熱點(diǎn)之一。該文基于WSN中數(shù)據(jù)序列的相關(guān)性,提出一種兩步數(shù)據(jù)壓縮算法(TSC-SC)。網(wǎng)絡(luò)中的簇首和簇內(nèi)節(jié)點(diǎn)執(zhí)行各自的壓縮算法:簇首首先執(zhí)行相關(guān)性分組算法,將數(shù)據(jù)分組,減少簇內(nèi)節(jié)點(diǎn)的計(jì)算量以及消除簇內(nèi)數(shù)據(jù)的空間相關(guān)性;簇內(nèi)節(jié)點(diǎn)對(duì)多屬性數(shù)據(jù)分類壓縮,并將壓縮參數(shù)傳至簇首,簇首解壓后再次進(jìn)行分類壓縮,進(jìn)一步消除數(shù)據(jù)相關(guān)性,減少節(jié)點(diǎn)數(shù)據(jù)冗余度,降低通信能耗。為實(shí)現(xiàn)對(duì)壓縮算法的綜合性能評(píng)價(jià),考慮基本的壓縮要求和算法的計(jì)算能耗,提出了基于能量判別的算法評(píng)估模型(NCER)。仿真結(jié)果表明TSC-SC算法可以有效降低壓縮比和壓縮誤差,充分減少數(shù)據(jù)傳輸量和網(wǎng)絡(luò)的通信能耗,利用NCER指標(biāo)能夠直觀地評(píng)價(jià)算法的性能。
-
關(guān)鍵詞:
- 無線傳感器網(wǎng)絡(luò) /
- 數(shù)據(jù)壓縮 /
- 序列相關(guān)性
Abstract: The data has correlations and redundancy in Wireless Sensor Network (WSN). How to reduce effectively the amount of communication data and extend the network life cycle is one of researching hot points. The Two-Step data Compression algorithm based on Sequence Correlation (TSC-SC) for WSN is proposed in this paper. The cluster head and the nodes in clusters perform different compression algorithms for themselves. In order to eliminate the spatial correlation of data and reduce the calculated amount, the cluster head nodes perform the grouping algorithm firstly, then the nodes in clusters perform the classifing compression to eliminate correlation for multi-attribute data, and pass the compression parameters to the cluster head; the cluster head perform the classifing compression again after decompressing the parameters. So the data-redundancy and communication energy consumption is further reduced. A new evaluation model named Network Compression Energy Ratio (NCER) based on energy discrimination is also proposed. The evaluation model realizes comprehensive evaluation of compression algorithms by considering both the basic requirements of compression and calculated energy consumption in the nodes. Simulation results show that TSC-SC algorithm can reduce the compression ratio and compression error effectively; the amount of communication data and energy consumption can achieve a satisfactory level in the network. The algorithm can be estimated directly using NCER.-
Key words:
- Wireless Sensor Network (WSN) /
- Data compression /
- Sequence correlation
-
唐亮, 周正, 石磊, 等. 基于能量均衡的無線傳感器網(wǎng)絡(luò)壓縮感知算法[J]. 電子與信息學(xué)報(bào), 2011, 33(8): 1919-1923. doi: 10.3724/SP.J.1146.2010.01388. TANG L, ZHOU Z, SHI L, et al. Energy balance based WSN compressive sensing algorithm[J]. Journal of Electronics and Information Technology, 2011, 33(8): 1919-1923. doi: 10.3724 /SP.J.1146.2010.01388. KIM H W, SEO H S, HONG S H, et al. Modeling of energy-efficient applicable routing algorithm in WSN[J]. International Journal of Digital Content Technology Its Applications, 2010, 4(5): 13-22. ERRATT N and LIANG Y. Compressed data-stream protocol: an energy-efficient compressed data-stream protocol for wireless sensor networks[J]. IET Communications, 2011, 5(18): 2673-2683. doi: 10.1049/iet- com.2011.0118. 錢志鴻, 王義君. 面向物聯(lián)網(wǎng)的無線傳感器網(wǎng)絡(luò)綜述[J]. 電子與信息學(xué)報(bào), 2013, 35(1):?215-227. doi: 10.3724/SP.J.1146. 2012.00876. QIAN Zhihong and WANG Yijun. Internet of things-oriented wireless sensor networks review[J]. Journal of Electronics Information Technology, 2013, 35(1):?215-227. doi: 10.3724 /SP.J.1146.2012.00876. 徐曉濱, 文成林, 劉榮利. 基于隨機(jī)集理論的多源信息統(tǒng)一表示與建模方法[J]. 電子學(xué)報(bào), 2008, 36(6): 1174-1181. XU Xiaobin, WEN Chenglin, and LIU Rongli. The unified method of describing and modeling multisource information based on random set theory[J]. Acta Electronica Sinica, 2008, 36(6): 1174-1181. 李陽陽, 王洪波, 張鵬, 等. 基于多屬性信息的數(shù)據(jù)中心間數(shù)據(jù)傳輸調(diào)度方法[J]. 通信學(xué)報(bào), 2012, 33(Z1): 121-131. doi: 10.3969/j.issn.1000-436x.2012.z1.016. LI Yangyang, WANG Hongbo, ZHANG Peng, et al. Multi-attribute aware scheduling for inter-datacenter bulk transfers[J]. Journal on Communications, 2012, 33(Z1): 121-131. doi: 10.3969/j.issn.1000-436x.2012.z1.016. CHOU J, PETROVIC D, and RAMCHANDRAN K. A distributed and adaptive signal processing approach to exploiting correlation in sensor networks[J]. Ad Hoc Networks, 2004, 2(4): 387-403. doi: ?10.1016/j.adhoc.2003.09.001. 王雷春, 馬傳香. 傳感器網(wǎng)絡(luò)中一種基于一元線性回歸模型的空時(shí)數(shù)據(jù)壓縮算法[J]. 電子與信息學(xué)報(bào), 2010, 32(3): 755-758. doi: 10.3724/SP.J.1146.2009.00704. WANG Leichun and MA Chuanxiang. A one-dimensional linear regression model based spatial and temporal data compression algorithm for wireless senor networks[J]. Journal of Electronics Information Technology, 2010, 32(3): 755-758. doi: 10.3724/SP.J.1146.2009.00704. 蔣鵬, 吳建峰, 吳斌, 等. 基于自適應(yīng)最優(yōu)消零的無線傳感器網(wǎng)絡(luò)數(shù)據(jù)壓縮算法研究[J]. 通信學(xué)報(bào), 2013, 34(2): 1-7. doi: 10.3969/j.issn.1000-436x.2013.02.001. JIANG Peng, WU Jianfeng, WU Bin, et al. Data compression method for wireless sensor networks based on adaptive optimal zero suppression[J]. Journal on Communications, 2013, 34(2): 1-7. doi: 10.3969/j.issn.1000-436x.2013.02.001. 杜卓明, 耿國(guó)華, 賀毅岳. 一種基于壓縮感知的二維幾何信號(hào)壓縮方法[J]. 自動(dòng)化學(xué)報(bào), 2012,?38(11):?1841-1846. doi: 10.3724/SP.J.1004.2012.01841. DU Zhuoming, GENG Guohua, and HE Yiyue. A 2-D geometric signal compression method based on compressed sensing[J]. Acta Automatic, Sinaca, 2012,?38(11): 1841-1846. doi: 10.3724/SP.J.1004.2012.01841. 陳正宇, 楊庚, 陳蕾, 等. 基于壓縮感知的WSNs長(zhǎng)生命周期數(shù)據(jù)收集方法[J]. 電子與信息學(xué)報(bào), 2014, 36(10): 2343-2349. doi: 10.3724/SP.J.1146.2013.01787. CHEN Zhengyu, YANG Geng, CHEN Lei, et al. Data gathering for long network lifetime in WSNs based on compressed sensing[J]. Journal of Electronics Information Technology, 2014, 36(10): 2343-2349. doi: 10.3724/SP.J.1146. 2013.01787. 黃海平, 陳九天, 王汝傳, 等. 無線傳感器網(wǎng)絡(luò)中基于數(shù)據(jù)融合樹的壓縮感知算法[J]. 電子與信息學(xué)報(bào), 2014, 36(10): 2364-2369. doi: 10.3724/SP.J.1146.2013.01621. HUANG Haiping, CHEN Jiutian, WANG Ruchuan, et al. Compressed sensing algorithm based on data fusion tree in wireless sensor networks[J]. Journal of Electronics Information Technology, 2014, 36(10): 2364-2369. doi: 10.3724/SP.J.1146.2013.01621. 周四望, 李蘭. 傳感器網(wǎng)絡(luò)基于DTW的多小波壓縮算法[J].通信學(xué)報(bào), 2014, 35(8): 86-94. doi: 10.3969/j.issn.1000-436x. 2014.08.012. ZHOU Siwang and LI Lan. DTW-based multi-wavelet data compression algorithm for wireless sensor networks[J]. Journal on Communications, 2014, 35(8): 86-94. doi: 10.3969/j.issn.1000-436x.2014.08.012. 朱鐵軍, 林亞平, 周四望, 等. 無線傳感器網(wǎng)絡(luò)中基于小波的自適應(yīng)多模數(shù)據(jù)壓縮算法[J]. 通信學(xué)報(bào), 2009, 30(3): 48-53. ZHU Tiejun, LIN Yaping, ZHOU Siwang, et al. Adaptive multiple-modalities data compression algorithm using wavelet for wireless sensor networks[J]. Journal on Communications, 2009, 30(3): 48-53. POLASTRE J, SZEWCZY K R, and CULLER D. Telos: enabling ultra-low power wireless research[C]. Proceedings of the 4th International Symposium on Information Processing in Sensor Networks, California, 2005: 364-369. doi:?10.1109/ IPSN.2005.1440950. HEINZELMAN W, CHANDRAKASAN A, and BALAKRISHNAN H. Energy-efficient communication protocol for wireless micro sensor networks[C]. Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, Hawaii, 2000: 3005-3014. -
計(jì)量
- 文章訪問數(shù): 1283
- HTML全文瀏覽量: 176
- PDF下載量: 475
- 被引次數(shù): 0