能量收集型高斯竊聽(tīng)信道安全速率的優(yōu)化
doi: 10.11999/JEIT150227 cstr: 32379.14.JEIT150227
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61271259, 61301123),重慶市自然科學(xué)基金(CTSC2011JJA40006),重慶市教委科學(xué)技術(shù)研究(KJ120501, KJ120502, KJ130535),長(zhǎng)江學(xué)者和創(chuàng)新團(tuán)隊(duì)發(fā)展計(jì)劃(IRT1299)和重慶市科委重點(diǎn)實(shí)驗(yàn)室專項(xiàng)經(jīng)費(fèi)
Optimization of Secrecy Rate for Energy Harvesting Gaussian Wiretap Channel
Funds:
The National Natural Science Foundation of China (61271259, 61301123)
-
摘要: 針對(duì)無(wú)線網(wǎng)絡(luò)存在安全威脅和能量受限的問(wèn)題,該文研究了基于ST(Save-then-Transmit)協(xié)議的能量收集型高斯竊聽(tīng)信道的安全通信。首先,對(duì)系統(tǒng)安全速率最大化進(jìn)行研究;其次,為進(jìn)一步提高系統(tǒng)安全速率,給出了協(xié)作抗干擾方案,并討論了該方案提高安全速率的充分必要條件,且提出了該方案下安全速率的迭代優(yōu)化算法;最后,給出了一種復(fù)雜度低的單輔助端的選擇方案。仿真結(jié)果表明,第1種優(yōu)化方案明顯提高了系統(tǒng)的安全速率;第2種協(xié)作抗干擾方案可進(jìn)一步提高系統(tǒng)的安全速率且收斂速度較快;當(dāng)原能量收集型高斯竊聽(tīng)信道不能進(jìn)行安全通信時(shí),協(xié)作抗干擾方案可在一定條件下實(shí)現(xiàn)安全傳輸。
-
關(guān)鍵詞:
- 無(wú)線通信 /
- 高斯竊聽(tīng)信道 /
- 安全速率 /
- 協(xié)作抗干擾 /
- ST(Save-then-Transmit)協(xié)議 /
- 能量收集
Abstract: To solve the problems of security threats and energy constrained in wireless networks, this paper studies secure communication of energy harvesting Gaussian wiretap channel based on Save-then-Transmit (ST) protocol. Firstly, the optimization of the system secrecy rate is studied. Next, to further improve the system secrecy rate, a Cooperative Jamming (CJ) scheme is given. Besides, the sufficient and necessary conditions for this scheme to achieve a higher secrecy rate are discussed. Then, an iterative optimization algorithm of the secrecy rate in this scheme is proposed. Finally, a low complexity selection scheme for single helper is given. Simulation results show that, the first optimization scheme obviously improves the system secrecy rate. The second cooperative jamming scheme can further enhance the system secrecy rate and has fast convergence rate. When the original energy harvesting Gaussian wiretap channel can not operate secure communication, the cooperative jamming scheme can achieve secure transmission under certain conditions. -
Shiu Y S, Chang S Y, Wu H C, et al.. Physical layer security in wireless networks: A tutorial[J]. IEEE Wireless Communications, 2011, 18(2): 66-74. Wyner A D. The wire-tap channel[J]. The Bell System Technical Journal, 1975, 54(8): 1355-1387. Xie Jian-wei and Ulukus S. Secure degrees of freedom of the Gaussian wiretap channel with helpers[C]. Proceedings of the Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, 2012: 193-200. Xie Jian-wei and Ulukus S. Secure degrees of freedom of the Gaussian wiretap channel with helpers and no eavesdropper CSI: blind cooperative jamming[C]. Proceedings of the Annual Conference on Information Sciences and Systems (CISS), Baltimore, MD, 2013: 1-5. Bassily R and Ulukus S. Deaf cooperation and relay selection strategies for secure communication in multiple relay networks[J]. IEEE Transactions on Signal Processing, 2013, 61(6): 1544-1554. Oggier F and Hassibi B. The secrecy capacity of the MIMO wiretap channel[J]. IEEE Transactions on Information Theory, 2011, 57(8): 4961-4972. Ekrem E and Ulukus S. The secrecy capacity region of the Gaussian MIMO multi-receiver wiretap channel[J]. IEEE Transactions on Information Theory, 2011, 57(4): 2083-2114. Bustin R, Liu Ruo-heng, and Poor H V. An MMSE approach to the secrecy capacity of the MIMO Gaussian wiretap channel[C]. Proceedings of the IEEE International Symposium on Information Theory (ISIT), Seoul, 2009: 2602-2606. Fakoorian S A A and Swindlehurst A L. Optimal power allocation for GSVD-based beamforming in the MIMO Gaussian wiretap channel[C]. Proceedings of the IEEE International Symposium on Information Theory (ISIT), Cambridge, MA, 2012: 2321-2325. Khisti A and Wornell G W. Secure transmission with multiple antennas-part II: the MIMOME wiretap channel[J]. IEEE Transactions on Information Theory, 2010, 56(11): 5515-5532. Sudevalayam S and Kulkarni P. Energy harvesting sensor nodes: Survey and implications[J]. IEEE Communications Surveys Tutorials, 2011, 13(3): 443-461. Visser H J and Vullers R J M. RF energy harvesting and transport for wireless sensor network applications: principles and requirements[J]. Proceedings of the IEEE, 2013, 101(6): 1410-1423. Luo Shi-xin, Zhang Rui, and Lim T J. Optimal save-then-transmit protocol for energy harvesting wireless transmitters[J]. IEEE Transactions on Wireless Communications, 2013, 12(3): 1196-1207. -
計(jì)量
- 文章訪問(wèn)數(shù): 1342
- HTML全文瀏覽量: 203
- PDF下載量: 501
- 被引次數(shù): 0