一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于隨機(jī)紋理的代價(jià)濾波式摳圖

陳秋鳳 申群太 劉鵬飛

陳秋鳳, 申群太, 劉鵬飛. 基于隨機(jī)紋理的代價(jià)濾波式摳圖[J]. 電子與信息學(xué)報(bào), 2015, 37(11): 2578-2586. doi: 10.11999/JEIT150143
引用本文: 陳秋鳳, 申群太, 劉鵬飛. 基于隨機(jī)紋理的代價(jià)濾波式摳圖[J]. 電子與信息學(xué)報(bào), 2015, 37(11): 2578-2586. doi: 10.11999/JEIT150143
Chen Qiu-feng, Shen Qun-tai, Liu Peng-fei. Cost Filtered Matting with Radom Texture Features[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2578-2586. doi: 10.11999/JEIT150143
Citation: Chen Qiu-feng, Shen Qun-tai, Liu Peng-fei. Cost Filtered Matting with Radom Texture Features[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2578-2586. doi: 10.11999/JEIT150143

基于隨機(jī)紋理的代價(jià)濾波式摳圖

doi: 10.11999/JEIT150143 cstr: 32379.14.JEIT150143
基金項(xiàng)目: 

國(guó)家自然科學(xué)基金(61473318, 60974048)

Cost Filtered Matting with Radom Texture Features

Funds: 

The National Natural Science Foundation of China (61473318, 60974048)

  • 摘要: 該文針對(duì)摳圖中前背景顏色歧義這一難題,提出快速隨機(jī)紋理算法來(lái)對(duì)顏色信息進(jìn)行有效的補(bǔ)償,先對(duì)原始圖像進(jìn)行稠密抽取得到初始紋理,后經(jīng)隨機(jī)投影降維,再根據(jù)前背景交疊度選擇最優(yōu)通道生成隨機(jī)紋理圖。結(jié)合生成的紋理信息,設(shè)計(jì)了空間、顏色、紋理聯(lián)合樣本選擇指標(biāo)。接著,綜合考慮局部近鄰和非局部近鄰的作用,對(duì)樣本選擇代價(jià)進(jìn)行濾波。最后論證近鄰迭代濾波與全局能量方程平滑的關(guān)系,推導(dǎo)了后期迭代平滑公式。實(shí)驗(yàn)結(jié)果表明,基于隨機(jī)紋理的代價(jià)濾波式摳圖在前背景顏色分布近似時(shí),能夠取得視覺(jué)和定量上更好的結(jié)果。
  • Levin A, Lischinski D, and Weiss Y. A closed form solution to natural image matting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 30(2): 61-68.
    Shi Y, Au O C, Pang J, et al.. Color clustering matting[C]. IEEE International Conference on Multimedia and Expo, California, USA, 2013, 7: 1-6.
    Wang J and Cohen M F. Optimized color sampling for robust matting[C]. IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, USA, 2007, 6: 281-288.
    He B,Wang G J, and Zhang C. Iterative transductive learning for automatic image segmentation and?matting?with RGB-D data[J]. Journal of Visual Communication and Image Representation, 2014, 25(5): 1031-1043.
    Shahrian E, Rajan D, Price B, et al.. Improving image matting using comprehensive sampling sets[C]. Conference on Computer Vision and Pattern Recognition, Oregon, Portland, USA, 2013, 6: 636-643.
    Shahrian E and Rajan D. Weighted color and texture sample selection for image matting[C]. IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, USA, 2012, 6: 718-725.
    Rhemann C, Rother C, and Gelautz M. Improving color modeling for alpha matting[C]. The British Machine Vision Conference, Leeds, UK, 2008, 9: 1155-1164.
    He K, Rhemann C, Rother C, et al.. A global sampling method for alpha matting[C]. IEEE Conference on Computer Vision and Pattern Recognition, Colorado, USA, 2011, 6: 2049-2056.
    Gastal E S and Oliveira M M. Shared sampling for real‐time alpha matting[J]. Eurographics, 2010, 29(2): 575-584.
    Jubin J, Deepu R, and Hisham C. Sparse codes as alpha mattes[C]. The British Machine Vision Conference, Nottingham, England, 2014, 9: 1-11.
    Varma M and Zisserman A. A statistical approach to material classification using image patches[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(11): 2032-2047.
    Liu L and Paul W. Texture classification from random features[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(3): 574-586.
    Hosini A, Bleyer M, Rother C, et al.. Fast cost-volume filtering for visual correspondence and beyond[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(2): 504-511.
    Dasgupta S and Gupta A. An elementary proof of a theorem of Johnson and Lindenstrauss[J]. Random Structures and Algorithms, 2003, 22(1): 60-65.
    Sural S, Qian G, and Pramanik S. Segmentation and histogram generation using the HSV color space for image retrieval[C]. International Conference on Image Processing, New York, USA, 2002, 2: 589-592.
    Marius M and David GL. Fast approximate nearest neighbors with automatic algorithm configuration[C]. International Conference on Computer Vision Theory and Applications, Lisbon, Portugal, 2009, 2: 331-340.
  • 加載中
計(jì)量
  • 文章訪問(wèn)數(shù):  1559
  • HTML全文瀏覽量:  141
  • PDF下載量:  396
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2015-01-27
  • 修回日期:  2015-06-29
  • 刊出日期:  2015-11-19

目錄

    /

    返回文章
    返回