頻率選擇性信道中的多用戶分布式波束形成技術(shù)
doi: 10.11999/JEIT150137 cstr: 32379.14.JEIT150137
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61171140)資助課題
Distributed Multiuser Beamforming for Relay Networks in Frequency-selective Channels
Funds:
The National Natural Science Foundation of China (61171140)
-
摘要: 該文研究頻率選擇性信道中多用戶點(diǎn)對(duì)點(diǎn)分布式中繼網(wǎng)絡(luò)波束形成技術(shù)。為了均衡源節(jié)點(diǎn)與中繼節(jié)點(diǎn)以及中繼節(jié)點(diǎn)與目標(biāo)節(jié)點(diǎn)之間的頻率選擇性信道,該文提出的波束形成技術(shù)在中繼節(jié)點(diǎn)上采用有限長(zhǎng)響應(yīng)濾波器和濾波而后轉(zhuǎn)發(fā)的中繼數(shù)據(jù)傳輸方法,以最小化中繼節(jié)點(diǎn)的發(fā)射總功率為目標(biāo),同時(shí)滿足所有目標(biāo)節(jié)點(diǎn)的服務(wù)質(zhì)量(QoS)。該波束形成優(yōu)化問題的直接形式由于其非凸性而難以求得最優(yōu)解。該文采用半定松弛(SDP)方法將其近似為凸優(yōu)化問題,進(jìn)而可以用內(nèi)點(diǎn)法高效快速求解。仿真結(jié)果表明,相較于傳統(tǒng)的放大而后轉(zhuǎn)發(fā)的波束形成技術(shù),所提波束形成方法能有效提高頻率選擇性信道中多用戶中繼網(wǎng)絡(luò)的性能。
-
關(guān)鍵詞:
- 分布式波束形成 /
- 濾波轉(zhuǎn)發(fā) /
- 頻率選擇性中繼網(wǎng)絡(luò)
Abstract: In this paper, a distributed peer-to-peer beamforming technique in frequency-selective relay networks is proposed. It is assumed that all the relay nodes use Filter-and-Forward (FF) protocol to compensate for the source-to-relay and relay-to-destination channels. All the channels of the active source-destination pairs are considered to be frequency-selective. The beamforming strategy that minimizes the total relay transmitted power subject to the Quality-of-Service (QoS) constraints for all of the destination nodes is considered. The resultant problem is approximately solved using Semi-Definite Programming (SDP). Simulation results demonstrate that in frequency-selective multiuser relay networks, the proposed technique substantially outperforms the existing amplify-and-forward peer-to-peer beamforming methods. -
Wang Hui-ming, Luo Miao, Xia Xiang-gen, et al.. Joint cooperative beamforming and jamming to secure AF relay systems with individual power constraint and no eavesdropper,s CSI[J]. IEEE Signal Processing Letters, 2013, 20(1): 39-42. Zappone A, Cao P, and Jorswieck E A. Energy efficiency optimization in relay-assisted MIMO systems with perfect and statistical CSI[J]. IEEE Transactions on Signal Processing, 2014, 62(2): 443-457. 羅苗, 王慧明, 殷勤業(yè). 基于協(xié)作波束形成的中繼阻塞混合無線物理層安全傳輸[J]. 中國(guó)科學(xué): 信息科學(xué), 2013, 43(4): 445-458. Luo Miao, Wang Hui-ming, and Yin Qin-ye. Hybrid relaying and jamming for wireless physical layer security based on cooperative beamforming[J]. SCIENCE CHINA Information Science, 2013, 43(4): 445-458. Yang Y, Li Q, Ma W K, et al.. Cooperative secure beamforming for AF relay networks with multiple eavesdroppers[J]. IEEE Signal Processing Letters, 2013, 20(1): 35-38. Wang X, Wang K, and Zhang X D. Secure relay beamforming with imperfect channel side information[J]. IEEE Transactions on Vehicular Technology, 2013, 62(5): 2140-2155. 王超, 鄧科, 莊麗莉, 等. 協(xié)作認(rèn)知網(wǎng)絡(luò)中魯棒的分布式波束形成[J]. 西安交通大學(xué)學(xué)報(bào), 2013, 47(12): 84-89. Wang Chao, Deng Ke, Zhuang Li-li, et al.. A robust distributed relay beamforming algorithm for cooperative cognitive radio networks[J]. Journal of Xian Jiaotong University, 2013, 47(12): 84-89. Zhang Y, Zhao H, and Pan C. Optimization of an amplify- and-forward relay network considering time delay and estimation error in channel state information[J]. IEEE Transactions on Vehicular Technology, 2014, 63(5): 2483-2488. Hadjtaieb A, Chelli A, Alouini M S, et al.. Performance analysis of selective decode-and-forward multi-node incremental relaying with maximal ratio combining[C]. Proceedings of the International Conference on Communications and Networking (ComNet), Hammamet, Tunisia, 2014: 1-6. Gonzalez D C, Santos Filho J C S, and Costa D B D. A distributed transmit antenna selection scheme for fixed-gain multi-antenna AF relaying systems[C]. Proceedings of the International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), Oulu, Finland, 2014: 254-259. Li Z, Shen L, and Wang J. Quasi-orthogonal space time block code for decode-and-forward relay networks[C]. Proceedings of the International Forum on Computer Science-Technology and Applications (IFCSTA), Chongqing, China, 2009: 58-61. Luo J, Blum R S, Cimini L J, et al.. Decode-and-forward cooperative diversity with power allocation in wireless networks[J]. IEEE Transactions on Wireless Communications, 2007, 6(3): 793-799. Jing Y and Jafarkhani H. Distributed differential space-time coding for wireless relay networks[J]. IEEE Transactions on Communications, 2008, 56(7): 1092-1100. Mheidat H, Uysal M, and Al-Dhahir N. Equalization techniques for distributed space-time block codes with amplify-and-forward relaying[J]. IEEE Transactions on Signal Processing, 2007, 55(5): 1839-1852. Jing Y and Jafarkhani H. Network beamforming using relays with perfect channel information[C]. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Honolulu, USA, 2007: 473-476. Jing Y, and Jafarkhani H. Network beamforming using relays with perfect channel information[J]. IEEE Transactions on Information Theory, 2009, 55(6): 2499-2517. Zheng G, Wong K K, Paulraj A, et al.. Collaborative-relay beamforming with perfect CSI: optimum and distributed implementations[J]. IEEE Signal Processing Letters, 2009, 16(4): 257-260. Havary-Nassab V, Shahbazpanahi S, Grami A, et al.. Distributed beamforming for relay netowrks based on second- order statistics of the channel state information[J]. IEEE Transactions on Signal Processing, 2008, 56(9): 4306-4316. Fazeli-Dehkordy S, Shahbazpanahi S, and Gazor S. Multiple peer-to-peer communications using a network of relays[J]. IEEE Transactions on Signal Processing, 2009, 57(8): 3053-3062. Chen H, Gershman A, and Shahbazpanahi S. Filter-and- forward distributed beamforming for relay networks in frequency selective fading channels[C]. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Taipei, China, 2009: 2269-2272. Chen H, Gershman A, and Shahbazpanahi S. Filter-and- forward distributed beamforming for relay networks in frequency selective fading channels[J]. IEEE Transactions on Signal Processing, 2010, 58(3): 1251-1262. Rappaport T S. Wireless Communications: Principles and Practice (Second Edition)[M]. Upper Saddle River, Prentice Hall, 2002: 143-153, 308-323. Boyd S and Vandenberghe L. Convex Optimization[M]. New York: Cambridge University Press, 2004: 168-188. Sturm J F. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones[J]. Optimization Methods Software, 1999, 11(1-4): 625-653. Lobo M S, Vandenberghe L, Boyd S, et al.. Applications of second-order cone programming[J]. Linear Algebra and Its Applications, 1998, 284(1-3): 193-228. Beck A and Eldar Y C. Strong duality in noncovex quadratic optimization with two quadratic constraints[J]. SIAM Journal on Optimization, 2006, 17(3): 844-860. Ma W K, Davidson T N, Wong K M, et al.. Quasi-ML multiuser detection using semi-definite relaxation with application to synchronous CDMA[J]. IEEE Transactions on Signal Processing, 2002, 50(4): 912-922. Sidiropoulos N D, Davidson T N, and Luo Z Q. Transmit beamforming for physical-layer multicasting[J]. IEEE Transactions on Signal Processing, 2006, 54(6): 2239-2251. -
計(jì)量
- 文章訪問數(shù): 1308
- HTML全文瀏覽量: 147
- PDF下載量: 475
- 被引次數(shù): 0