一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于時(shí)序特性的自適應(yīng)增量主成分分析的視覺跟蹤

蔡自興 彭夢 余伶俐

蔡自興, 彭夢, 余伶俐. 基于時(shí)序特性的自適應(yīng)增量主成分分析的視覺跟蹤[J]. 電子與信息學(xué)報(bào), 2015, 37(11): 2571-2577. doi: 10.11999/JEIT141646
引用本文: 蔡自興, 彭夢, 余伶俐. 基于時(shí)序特性的自適應(yīng)增量主成分分析的視覺跟蹤[J]. 電子與信息學(xué)報(bào), 2015, 37(11): 2571-2577. doi: 10.11999/JEIT141646
Cai Zi-xing, Peng Meng, Yu Ling-li. Adaptive Incremental Principal Component Analysis Visual Tracking Method Based on Temporal Characteristics[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2571-2577. doi: 10.11999/JEIT141646
Citation: Cai Zi-xing, Peng Meng, Yu Ling-li. Adaptive Incremental Principal Component Analysis Visual Tracking Method Based on Temporal Characteristics[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2571-2577. doi: 10.11999/JEIT141646

基于時(shí)序特性的自適應(yīng)增量主成分分析的視覺跟蹤

doi: 10.11999/JEIT141646 cstr: 32379.14.JEIT141646
基金項(xiàng)目: 

國家自然科學(xué)基金重大研究計(jì)劃(90820302)和國家自然科學(xué)基金(61175064, 61403426, 61403423)

Adaptive Incremental Principal Component Analysis Visual Tracking Method Based on Temporal Characteristics

Funds: 

The Major Research Project of the National Natural Science Foundation of China (90820302)

  • 摘要: 當(dāng)前基于增量主成分分析(PCA)學(xué)習(xí)的跟蹤方法存在兩個(gè)問題,首先,觀測模型沒有考慮目標(biāo)外觀變化的連續(xù)性;其次,當(dāng)目標(biāo)外觀的低維流行分布為非線性結(jié)構(gòu)時(shí),基于固定頻率更新模型的增量PCA學(xué)習(xí)不能適應(yīng)子空間模型的變化。為此,該文首先基于目標(biāo)外觀變化的連續(xù)性,在子空間模型中提出更合理的目標(biāo)先驗(yàn)概率分布假設(shè)。然后,根據(jù)當(dāng)前跟蹤結(jié)果與子空間模型之間的匹配程度,自適應(yīng)調(diào)整遺忘比例因子,使得子空間模型更能適應(yīng)目標(biāo)外觀變化。實(shí)驗(yàn)結(jié)果驗(yàn)證了所提方法能有效提高跟蹤的魯棒性和精度。
  • Ross D A, Lim J W, Lin R S, et al.. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(1-3): 125-141.
    Bao C L, Wu Y, Linh H B, et al.. Real time robust L1 tracker using accelerated proximal gradient approach[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, 2012: 1830-1837.
    MeI X and Ling H B. Robust visual tracking and vehicle classification via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11): 2259-2272.
    Babenko B, Yang M H, Belongie S, et al.. Robust object tracking with online multiple instance learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632.
    Grabner H and Bischof H. On-line boosting and vision[C]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, 2006, 1: 260-267.
    Avidan S. Ensemble tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(2): 261-271.
    Yang M, Zhang C X, Wu Y W, et al.. Robust object tracking via online multiple instance metric learning[C]. Electronic Proceedings of the 2013 IEEE International Conference on Multimedia and Expo Workshops, San Jose, 2013: 1-4.
    Zhong Wei, Lu Hu-chuan, and Yang M. Robust object tracking via sparse collaborative appearance model[J]. IEEE Transactions on Image Processing, 2014, 23(5): 2356-2368.
    呂卓紋, 王科俊, 李宏宇, 等. 融合Camshift的在線Adaboost目標(biāo)跟蹤算法[J].?中南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2013, 44(2): 232-238.
    Lu Zhuo-wen, Wang Ke-jun, Li Hong-yu, et al.. Online Adaboost target tracking algorithm combined fused with Camshift[J]. Journal of Central South University(Science and Technology), 2013, 44(2): 232-238.
    錢誠, 張三元. 適用于目標(biāo)跟蹤的加權(quán)增量子空間學(xué)習(xí)算法[J]. 浙江大學(xué)學(xué)報(bào)(工學(xué)版), 2011, 45(12): 2240-2246.
    Qian Cheng and Zhang San-yuan. Weighted incremental subspace learning algorithm suitable for object tracking[J]. Journal of Zhejiang University (Engineering Science), 2011, 45(12): 2240-2246.
    Cruz-Mota J, Bierlaire M, and Thiran J. Sample and pixel weighting strategies for robust incremental visual tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(5): 898-911.
    Xie Yuan, Zhang Wen-sheng, Qu Yan-yun, et al.. Discriminative subspace learning with sparse representation view-based model for robust visual tracking[J]. Pattern Recognition, 2014, 47(3): 1383-1394.
    Ji Zhang-jian, Wang Wei-qiang, and Xu Ning. Robust object tracking via incremental subspace dynamic sparse model[C]. Proceedings of IEEE International Conference on Multimedia and Expo, Chengdu, 2014: 1-6.
    Guo Yan-wen, Chen Ye, and Tang Feng. Object tracking using learned feature manifolds[J]. Computer Vision and Image Understanding, 2014, 118(1): 128-139.
    Chen Wei-hua, Cao Li-jun, and Zhang Jun-ge. An adaptive combination of multiple features for robust tracking in real scene[C]. Proceedings of the IEEE International Conference on Computer Vision, Sydney, 2013: 129-136.
    Yang Han-xuan, Song Zhan, and Chen Ru-nen. An incremental PCA-HOG descriptor for robust visual hand tracking[J]. Lecture Notes in Computer Science, 2010, 6553: 687-695.
    Moghaddam B and Pentland A. Probabilistic visual learning for object detection[C]. Proceedings of the IEEE International Conference on Computer Vision, Cambridge, 1995: 786-793.
    Chen Feng, Wang Qing, Wang Song, et al.. Object tracking via appearance modeling and sparse representation[J]. Image and Vision Computing, 2011, 29(11): 787-796.
    Wang Dong, Lu Hu-chuan, and Yang M H . Online object tracking with sparse prototypes[J]. IEEE Transactions on Image Processing, 2013, 22(1): 314-325.
    Wang Qing, Chen Feng, Xu Wen-li, et al.. Object tracking via partial least squares analysis[J]. IEEE Transactions on Image Processing, 2012, 21(10): 4454-4465.
  • 加載中
計(jì)量
  • 文章訪問數(shù):  1460
  • HTML全文瀏覽量:  125
  • PDF下載量:  1077
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2014-12-25
  • 修回日期:  2015-07-20
  • 刊出日期:  2015-11-19

目錄

    /

    返回文章
    返回