基于秩減估計器的L型陣列二維波達角估計算法
doi: 10.11999/JEIT141538 cstr: 32379.14.JEIT141538
基金項目:
上海航天科技基金(SAST201215)和新世紀優(yōu)秀人才支持計劃(NCET-13-0034)
Rank Reduction Estimator Based Algorithm for Estimating 2D-DOA with L-shaped Array
-
摘要: 針對L型陣列2維波達角(2D-DOA)估計問題,該文提出了一種新的基于秩減估計器的算法。該算法利用輔助角將2D-DOA估計問題轉(zhuǎn)換為兩個級聯(lián)的1D-DOA估計問題:首先采用基于傳播算子的秩減估計器獲得高精度的輔助角估計;其次利用輔助角估計結(jié)果獲得某一入射角的一元代價函數(shù),借鑒root-MUSIC算法通過對多項式求根獲得某一入射角估計,而另一入射角估計可由已得角度估計和輔助角估計通過簡單轉(zhuǎn)換獲得且兩入射角之間無需配對。運算量分析表明,該算法運算量與JEADE算法接近,大于CODE和root-MUSIC算法。仿真實驗驗證了該算法在不同信噪比、快拍數(shù)目條件下可獲得高精度的DOA估計結(jié)果。Abstract: A novel algorithm is proposed for Two-Dimensional (2D) Direction Of Arrival (DOA) estimation issue with L-shaped array. By introducing an auxiliary electrical angle, 2D-DOA estimation problem is solved by two-step 1D-DOA estimation. Firstly auxiliary electrical angle estimation is given by a propagator based RAnk Reduction Estimator (RARE). Then a cost function about one incident angle is obtained, and the incident angle estimation is given by K zeros of polynomial relating to the cost function. Finally, The other incident angle estimation is given by simple algebraic operation between the obtained auxiliary electrical angle and incident angle estimations. Computational burden analysis is given in this paper. It is shown that the proposed algorithm has a roughly same computational burden with JEADE algorithm, while both of them has larger burden than CODE and root-MUSIC algorithms. Further, the Root-Mean-Square-Error (RMSE) expressions of the incident angle estimates are derived to validate the performance of the proposed algorithm.
-
Tayem N and Kwon H M. L-shape 2-dimensional arrival angle estimation with Propagator Method[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(5): 1622-1630. 董軼, 吳云韜, 廖桂生. 一種二維到達方向估計的ESPRIT 新方法[J]. 西安電子科技大學學報, 2003, 30(5): 569-573. Dong Yi, Wu Yun-tao, and Liao Gui-sheng. A novel method for estimating 2-D DOA[J]. Journal of Xidian University, 2003, 30(5): 569-573. Gu Jian-feng and Wei Ping. Joint SVD of two cross-correlation matrices to achieve automatic pairing in 2-D angle estimation problems[J]. IEEE Antennas and Wireless Propagation Letters, 2007, 6: 553-556. Han Hui-lian and Zhao Pin-jiao. A two-dimensional direction finding estimation with L-shape uniform linear arrays[C]. IMSNA 2013 Proceedings, Toronto, 2013: 779-782. Liang Jun-li and Liu Ding. Joint elevation and azimuth direction finding using L-shaped array[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(6): 2136-2141. Shahida G Q and Fan Yang-yu. A comment on Joint elevation and Azimuth direction finding using L-shaped array[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(7): 3546-3547. Wang Guang-ming, Xin Jing-min, Zheng Nan-ning, et al.. Computationally efficient subspace-based method for two-dimensional direction estimation with L-shaped array[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 31973212. Wang Guang-ming, Xin Jing-min, Zheng Nan-ning, et al.. Computationally efficient method for joint azimuth-elevation direction estimation with L-shaped array[C]. IEEE Workshop on Signal Processing Advances in Wireless Communications, Darmstadt, 2013: 470-474. Nie Xi and Li Li-ping. A computationally efficient subspace algorithm for 2-D DOA estimation with L-shaped array[J]. IEEE Signal Processing Letters, 2014, 21(8): 971974. Hou Hui-juan, Sheng Ge-hao, and Jiang Xiu-chen. Localization algorithm for the PD source in substation based on L-shaped antenna array signal processing[J]. IEEE Transactions on Power Delivery, 2015, 30(1): 472479. 吳彪, 陳輝, 楊春華. 基于L型陣列的方位估計及互耦自校正算法研究[J]. 電子學報, 2010, 38(6): 13161322. Wu Biao, Chen Hui, and Yang Chun-hua. Study of DOA estimation and self-calibration algorithm for L-shaped array in the presence of mutual coupling[J]. Acta Electornica Sinica, 2010, 38(6): 1316-1322. Dai Jin-sheng, Bao Xu, Hu Nan, et al.. A recursive RARE algorithm for DOA estimation with unknown mutual coupling[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 1593-1596. 吳彪, 陳輝, 胡曉琴. 基于Y 型陣的互耦矩陣與DOA 的同時估計方法[J]. 通信學報, 2010, 31(6): 119-126. Wu Biao, Chen Hui, and Hu Xiao-qin. Simultaneous estimation of mutual coupling matrix and DOA for Y-shaped array[J]. Journal on Communications, 2010, 31(6): 119-126. 黨曉方, 陳伯孝, 楊明磊. 基于root-RARE算法的非同構(gòu)分布式陣列高精度方向估計[J]. 系統(tǒng)工程與電子技術(shù), 2014, 36(6): 1027-1032. Dang Xiao-fang, Chen Bai-xiao, and Yang Ming-lei. High accuracy direction finding based on root-RARE using distributed non-identical subarray antenna[J]. Systems Engineering and Electronics, 2014, 36(6): 1027-1032. 劉亮, 陶建武, 黃家才. 基于稀疏對稱陣列的近場源定位[J]. 電子學報, 2009, 37(6): 1307-1312. Liu Liang, Tao Jian-wu, and Huang Jia-cai. Near-field source localization based on sparse symmetric array[J]. Acta Electornica Sinica, 2009, 37(6): 1307-1312. Barabell A J. Improving the resolution performance of eigenstructure-based direction-finding algorithms[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, Boston, MA, 1983, 1: 336339. Marcos S, Marsal A, and Benidir M. The propagator method for sources bearing estimation[J]. Signal Processing, 1995, 42(2): 121138. Gao F and Gershman A B. A generalized ESPRIT approach to direction-of-arrival estimation[J]. IEEE Signal Processing Letters, 2005, 12(3): 254257. Xia Tie-qi, Zheng Yi, Wan Qun, et al.. Decoupled estimation of 2-D angles of arrival using two parallel uniform linear arrays[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(9): 2627-2632. Meng Samson See C and Gershman A B. Direction-of-arrival estimation in partly calibrated subarray-based sensor arrays[J]. IEEE Transactions on Signal Processing, 2004, 52(2): 329338. -
計量
- 文章訪問數(shù): 1593
- HTML全文瀏覽量: 181
- PDF下載量: 493
- 被引次數(shù): 0