基于半正定約束的極化相似度最優(yōu)模型匹配目標(biāo)分解
doi: 10.11999/JEIT141468 cstr: 32379.14.JEIT141468
基金項(xiàng)目:
國(guó)家自然科學(xué)基金(61271024, 61201292, 61201283),新世紀(jì)優(yōu)秀人才支持計(jì)劃(NCET-09-0630),全國(guó)優(yōu)秀博士學(xué)位論文作者專(zhuān)項(xiàng)資金(FANEDD-201156),省部級(jí)基金和中央高?;究蒲袠I(yè)務(wù)費(fèi)
Positive-semidefinite Based Target Decomposition Using Optimal Model-matching with Polarization Similarity
-
摘要: 目標(biāo)分解是實(shí)現(xiàn)極化合成孔徑雷達(dá)目標(biāo)分類(lèi)、檢測(cè)與識(shí)別應(yīng)用的重要手段。傳統(tǒng)方法由于優(yōu)先對(duì)體散射分量進(jìn)行提取,其體散射能量的高估或二面角散射能量的低估現(xiàn)象較為嚴(yán)重。該文通過(guò)引入極化相似度量,基于數(shù)據(jù)驅(qū)動(dòng)自適應(yīng)地對(duì)基本散射機(jī)制的最優(yōu)匹配模型進(jìn)行選擇。在此基礎(chǔ)上,根據(jù)極化相似度量確定基本散射機(jī)制散射能量提取的優(yōu)先順序,并以各階次剩余矩陣能量非負(fù)為約束,最終確定面散射、二面角散射、體散射這3種基本散射機(jī)制的能量貢獻(xiàn)值。實(shí)測(cè)數(shù)據(jù)處理結(jié)果及其與光學(xué)圖像的對(duì)比結(jié)果表明,該文方法獲取的極化目標(biāo)分解結(jié)果優(yōu)于傳統(tǒng)方法,能夠準(zhǔn)確地提取目標(biāo)區(qū)域的基本散射特征。
-
關(guān)鍵詞:
- 極化合成孔徑雷達(dá) /
- 目標(biāo)分解 /
- 極化相似度 /
- 最優(yōu)模型匹配
Abstract: Target decomposition is an important tool to realize target classification, detection and recognition applications with Polarimetric SAR (PolSAR). However, the traditional method with priority of volume scattering component extraction seriously performs overestimation in the volume scattering energy or underestimation in the dihedral scattering energy. In this paper, by introducing polarimetric similarity measure, data-driven model- matching for basic scattering mechanism is proposed. On this basis, the priority of scattering mechanisms energy extraction is determined with the similarity measure. Based on the non-negative constraint of energy, all the orders of residual matrix are reextracted for the final energy contribution of the dihedral scattering, volume scattering, and surface scattering mechanism. The processing results of real data and their comparison with the optical image results show that the proposal is better than traditional methods for the accurate extracttion of the basic scattering characteristics in the targets region. -
Boerner W M, Yan W L, Xi A Q, et al.. Basic Concepts of Radar Polarimetry[M]. Netherlands: Springer, 1992: 155-245. Boerner W M. Basics of SAR Polarimetry I[R]. Chicago, IL: 2007. Mott H. Remote Sensing with Polarimetric Radar[M]. New York: Wiley-IEEE Press, 2007: 3-19. Cloude S R. Polarisation: Applications in Remote Sensing[M]. Oxford: Oxford University Press, 2009: 4-103. Lee J S and Pottier E. Polarimetric Radar Imaging From Basics to Applications[M]. United States: CRC Press, 2009: 5-53. Zebker H A and van Zyl J J. Imaging radar polarimetry: a review[J]. Proceedings of the IEEE, 1991, 79(11): 1583-1606. Chen Q, Kuang G Y, Li J, et al.. Unsupervised land cover/land use classification using PolSAR imagery based on scattering similarity[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(3): 1817-1825. Frery A C, Cintra R J, and Nascimento A. Entropy-based statistical analysis of PolSAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(6): 3733-3743. Kajimoto M and Susaki J. Urban-area extraction from polarimetric SAR images using polarization orientation angle[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(2): 337-341. Zhang P, Li M, Wu Y, et al.. Unsupervised multi-class segmentation of SAR images using fuzzy triplet Markov fields model[J]. Pattern Recognition, 2013, 46(4): 1-16. Ballester-Berman J D and Lopez-Sanchez J M. Applying the Freeman-Durden decomposition concept to polarimetric SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1): 466-479. Freeman A and Durden S L. A three-component scattering model for polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 963-973. Yamaguchi Y, Sato A, Sato R, et al.. Four-component scattering power decomposition with rotation of coherency matrix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 2251-2258. Yamada H, Komaya R, Yamaguchi Y, et al.. Scattering component decomposition for POL-InSAR dataset and its applications[C]. Geoscience and Remote Sensing Symposium, Cape Town, 2009: V-154-V-157. Van Zyl J J, Arii M, and Kim Y. Model-based decomposition of polarimetric SAR covariance matrices constrained for nonnegative eigenvalues[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9): 3452-3459. Cloude S R and Pottier E. A review of target decomposition theorems in radar polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2): 498-518. Singh G, Yamaguchi Y, and Park S E. General four- component scattering power decomposition with unitary transformation of coherency matrix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5): 3014-3022. -
計(jì)量
- 文章訪(fǎng)問(wèn)數(shù): 1344
- HTML全文瀏覽量: 138
- PDF下載量: 658
- 被引次數(shù): 0