一種新的低頻超寬帶干涉合成孔徑雷達絕對相位估計方法
doi: 10.11999/JEIT141334 cstr: 32379.14.JEIT141334
-
1.
(國防科學技術(shù)大學電子科學與工程學院 長沙 410073) ②(空軍預警學院信息對抗系 武漢 430019)
國家自然科學基金(61571447, 61201329)
A Novel Absolute Phase Determination Approach for Low Frequency Ultra-wideband SAR Interferometry
-
1.
(College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China)
-
2.
(Department of Information Countermeasures, Air Force Early Warning Academy, Wuhan 430019, China)
The National Natural Science Foundation of China (61571447, 61201329)
-
摘要: 該文針對低頻超寬帶(UWB)干涉合成孔徑雷達(InSAR),提出一種新的干涉相位絕對值估計方法。該方法首先對干涉圖像進行非參數(shù)模型的精配準,并利用配準偏移量生成配準相位。然后將配準相位從干涉相位中去除,得到失配相位。最后估計失配相位的絕對相位,進而得到絕對干涉相位的值。該方法利用失配相位具有無相位纏繞或只在相干性較差區(qū)域存在相位纏繞的特性估計其絕對相位,相比傳統(tǒng)的絕對干涉相位估計方法具有更小的運算復雜度。P波段UWB InSAR實測數(shù)據(jù)處理結(jié)果驗證了該方法的有效性。Abstract: Estimation of topography for the generation of Digital Elevation Models (DEM) requires the absolute interferometric phase. However, the existing absolute phase determination methods are complicated for processing the Ultra-WideBand (UWB) Synthetic Aperture Radar Interferometry (InSAR) data. To resolve this problem, a new approach is proposed in this paper. First, to acquire the high accuracy image registration result, the registration offsets are obtained from the interpolation of the offsets of the control points. Then, based on the offsets, the interferometric phase is computed and divided into two partsthe Registration Phase (RP) and the MisRegistration Phase (MRP). The RP is derived from the registration offsets, and the MRP is dependent on the unknown misregistration. Theoretical derivations show that the MRPs are unambiguous in most high coherence areas, so MRP can be unwrapped efficiently, and its absolute phase can be obtained directly without using any auxiliary data. Finally, the absolute interferometric phase is obtained from adding the RP and the true MRP. Compared with the existing algorithms, the proposed approach has lower complexity. Experimental results on P-band UWB InSAR data prove its effectiveness.
-
Rosen P A, Hensley S, Joughin I R, et al.. Synthetic aperture radar interferometry[J]. Proceedings of the IEEE, 2000, 88(3): 333-382. Zhong H P, Tang J S, Zhang S, et al.. A quality-guided and local minimum discontinuity based phase unwrapping algorithm for InSAR/InSAS interferograms[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 215-219. Yu H, Xing M, and Bao Z. A fast phase unwrapping method for large-scale interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(7): 4240-4248. Liu G, Wang R, Deng Y K, et al.. A new quality map for 2-D phase unwrapping based on gray level co-occurrence matrix[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(2): 444-448. Madsen S N. On absolute phase determination techniques in SAR interferometry[C]. Proceedings SPIE Conference on Radar Sensor Technology, Orlando, 1995: 393-401. Bamler R and Eineder M. Accuracy of differential shift estimation by correlation and split-bandwidth interferometry for wideband and delta-k SAR systems[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(2): 151-155. 袁志輝, 鄧云凱, 李飛, 等. 改進的基于最大似然估計的多通道InSAR高程重建方法[J]. 電子與信息學報, 2013, 35(9): 2161-2167. Yuan Z H, Deng Y K, Li F, et al.. Improved multichannel InSAR height reconstruction method based on maximum likelihood estimation[J]. Journal of Electronics Information Technology, 2013, 35(9): 2161-2167. Liu H, Xing M, and Bao Z. A cluster-analysis-based noise- robust phase-unwrapping algorithm for multibaseline interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 494-504. Bovenga F, Giacovazzo V M, Refice A, et al.. Multichromatic analysis of InSAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(9): 4790-4799. Bovenga F, Rana F M, Refice A, et al.. Multichromatic analysis of satellite wideband SAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(10): 1767-1771. Federal Communications Commission (FCC). Revision of part 15 of the commissions rules regarding ultra-wideband systems: First report and order[S]. 2002. Ulander L M H and Frolind P. Ultra-wideband SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(5): 1540-1550. Fr?lind P and Ulander L M H. Digital elevation map generation using VHF-band SAR data in forested areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(8): 1769-1776. Sansosti E, Berardino P, Manunta M, et al.. Geometrical SAR image registration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10): 2861-2870. Fritz T, Rossi C, Yague-Martinez N, et al.. Interferometric processing of TanDEM-X data[C]. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, BC, Canada, 2011: 2428-2431. 鐘何平, 唐勁松, 張森. 一種基于質(zhì)量引導和最小不連續(xù)合成的InSAR相位解纏算法[J]. 電子與信息學報, 2011, 33(2): 369-374. Zhong H P, Tang J S, and Zhang S. A combined phase unwrapping algorithm based on quality-guided and minimum discontinuity for InSAR[J]. Journal of Electronics Information Technology, 2011, 33(2): 369-374. Ghiglia D C and Pritt M D. Two-dimensional Phase Unwrapping: Theory, Algorithms, and Software[M]. New York: John Wiley Sons. Inc, 1998: 151-172. De Zan F. Accuracy of incoherent speckle tracking for circular gaussian signals[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 264-267. -
計量
- 文章訪問數(shù): 1417
- HTML全文瀏覽量: 120
- PDF下載量: 659
- 被引次數(shù): 0