基于復(fù)數(shù)信息傳遞的結(jié)構(gòu)稀疏寬角合成孔徑雷達(dá)成像算法
doi: 10.11999/JEIT141300 cstr: 32379.14.JEIT141300
基金項(xiàng)目:
國(guó)家973計(jì)劃項(xiàng)目(2010CB731905)
Group-sparse Complex Approximate Message Passing Algorithm for Wide Angle Synthetic Aperture Radar Imaging
-
摘要: 傳統(tǒng)相關(guān)處理算法不能完全解決寬角合成孔徑雷達(dá)(WASAR)成像中目標(biāo)的散射特性隨觀測(cè)角度變化的問(wèn)題。稀疏信號(hào)處理為該問(wèn)題提供一種新思路,各向異性問(wèn)題可以建模成欠定方程組。隨角度增大,未知量的規(guī)模以觀測(cè)孔徑數(shù)目的線性規(guī)模增長(zhǎng),導(dǎo)致成功重建難度增大,甚至是重建失敗。該文提出一種基于信息傳遞原理的寬角合成孔徑雷達(dá)成像方法。根據(jù)寬角合成孔徑雷達(dá)的觀測(cè)幾何及目標(biāo)散射特性在不同角度之間存在的相關(guān)性,建立基于結(jié)構(gòu)稀疏的成像模型;然后利用信息傳遞原理,提出基于結(jié)構(gòu)稀疏復(fù)數(shù)信息傳遞(GCAMP)的成像算法求解該成像模型。仿真結(jié)果驗(yàn)證了該方法的有效性。
-
關(guān)鍵詞:
- 合成孔徑雷達(dá) /
- 寬角合成孔徑雷達(dá)成像 /
- 各向異性散射特性 /
- 結(jié)構(gòu)稀疏 /
- 信息傳遞
Abstract: Conventional matched filtering based algorithms are not sufficiently good at dealing with the anisotropic backscattering behavior of targets in Wide Angle SAR (WASAR) imaging. Sparse signal processing provides a new idea for this problem, the anisotropic problem is modeled as a group of under-determined linear equations. However, the scale of unknowns in the under-determined equations is in linear order of the number of the observation angle. As the observation angle increases, the anisotropic problem becomes more and more difficult to be solved, even failed for conventional sparse signal processing algorithms. This paper presents a Group- sparse Complex Approximated Message Passing (GCAMP) algorithm for WASAR imaging. Firstly, a group sparse based WASAR imaging model is provided according to the structured property of backscattering coefficients across different observation angles. Secondly, the GCAMP algorithm is derived from the imaging model using message passing theory. Results of simulation demonstrate the effectiveness of the proposed algorithm.-
Key words:
- SAR /
- Wide Angle SAR (WASAR) imaging /
- Anisotropic backscattering /
- Group sparse /
- Message passing
-
Jakowatz C V, Wahl D E, Eichel P H, et al.. Spotlight-mode Synthetic Aperture Radar: A Signal Processing Approach[M]. Norwell, MA, US, Kluwer Academic Publishers, 1996: 62-94. Allen M R, Phillips S A, and Sofianos D J. Wide-angle SAR-matched filter image formation for enhanced detection performance[C]. Proceedings of the International Society for Optics and Photonics in Substance Identication Technologies, Innsbruck, Austria, 1993: 381-387. Chaney R D, Willsky A S, and Novak L M. Coherent aspect-dependent SAR image formation[C]. Proceedings of the International Society for Optics and Photonics in SPIE,s International Symposium on Optical Engineering and Photonics in Aerospace Sensing, Orlando, FL, USA, 1994, 256-274. Moses R L, Potter L C, and Cetin M. Wide-angle SAR imaging[C]. Proceedings of the International Society for Optics and Photonics in Defense and Security, Orlando, FL, USA, 2004: 164-175. Zhang B C, Hong W, and Wu Y R. Sparse microwave imaging: principles and applications[J]. SCIENCE CHINA Information Sciences, 2012, 55(8): 1722-1754. Varshney K R, Cetin M, Fisher J W, et al.. Joint image formation and anisotropy characterization in wide-angle SAR[C]. Proceedings of the International Society for Optics and Photonics in Defense and Security Symposium, Orlando, FL, USA, 2006: 62370D. Stojanovic I, Cetin M, and Karl W C. Joint space aspect reconstruction of wide-angle SAR exploiting sparsity[C]. Proceedings of the SPIE Defense and Security Symposium, Orlando, FL, USA, 2008: 697005. Cetin M, Stojanovic I, Onhon O, et al.. Sparsity-driven synthetic aperture radar imaging: reconstruction, autofocusing, moving targets, and compressed sensing[J]. IEEE Signal Processing Magazine, 2014, 31(4): 27-40. Ash J, Ertin E, Potter L, et al.. Wide-angle synthetic aperture radar imaging: models and algorithms for anisotropic scattering[J]. IEEE Signal Processing Magazine, 2014, 31(4): 16-26. 林赟, 譚維賢, 洪文, 等. 圓跡SAR極坐標(biāo)格式算法研究[J]. 電子與信息學(xué)報(bào), 2010, 32(12): 2802-2807. Lin Yun, Tan Wei-xian, Hong Wen, et al.. Polar format algorithm for circular synthetic aperture radar[J]. Journal of Electronics Information Technology, 2010, 32(12): 2802-2807. 洪文. 圓跡SAR成像技術(shù)研究進(jìn)展[J]. 雷達(dá)學(xué)報(bào), 2012, 1(2): 124-135. Hong Wen. Progress in circular SAR imaging technique[J]. Journal of Radars, 2012, 1(2): 124-135. Austin C D, Emre E, and Moses R L. Sparse signal methods for 3-D radar imaging[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(3): 408-423. Donoho D L, Maleki A, and Andrea M. Message-passing algorithms for compressed sensing[J]. Proceedings of the National Academy of Sciences, 2009, 106(45): 18914-18919. Maleki A, Laura A, Yang Z, et al.. Asymptotic analysis of complex LASSO via complex approximate message passing[J]. IEEE Transactions on Information Theory, 2013, 59(7): 4290-4308. Fang J, Xu Z B, Zhang B C, et al.. Fast compressed sensing SAR imaging based on approximated observation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(1): 352-363. Jiang, C L, Zhang B C, Fang J, et al.. Efficient lq regularisation algorithm with range-azimuth decoupled for SAR imaging[J]. Electronics Letters, 2014, 50(3): 204-205. -
計(jì)量
- 文章訪問(wèn)數(shù): 1697
- HTML全文瀏覽量: 145
- PDF下載量: 580
- 被引次數(shù): 0