地基雷達(dá)部署對探測臨近空間高超聲速目標(biāo)影響研究
doi: 10.11999/JEIT141024 cstr: 32379.14.JEIT141024
基金項(xiàng)目:
國家自然科學(xué)基金(61271451)和國家自然科學(xué)基金青年科學(xué)基金(61401504)
Detection Performance Assessment of Near-space Hypersonic Target Based on Ground-based Radar
-
摘要: 針對不同地基雷達(dá)(GBR)部署方式對探測臨近空間高超聲速目標(biāo)的性能影響問題,該文建立臨近空間高超聲速目標(biāo)模型和GBR探測模型,依據(jù)目標(biāo)雷達(dá)截面積(RCS)、探測距離和觀測角隨時(shí)間的變化情況,提出檢測概率、跟蹤系數(shù)和資源冗余率3種雷達(dá)探測性能評估指標(biāo),仿真分析GBR前沿部署、接力部署和要地部署方式對臨近空間高超聲速目標(biāo)探測性能的影響。結(jié)果表明,前沿部署和接力部署相結(jié)合的探測效果好,前沿部署首次發(fā)現(xiàn)目標(biāo)距離遠(yuǎn),能提供的預(yù)警時(shí)間長,要地部署跟蹤時(shí)間短,資源冗余率高。研究結(jié)果具有一定現(xiàn)實(shí)意義和工程實(shí)踐性,能為臨近空間預(yù)警系統(tǒng)中GBR部署提供理論依據(jù)和技術(shù)支撐。Abstract: Aiming at the problem that different Ground-Based Radar (GBR) deployment way influences the detection performance to the near-space hypersonic target, the near-space hypersonic target model and GBR detection model are established. On the basis of target Radar Cross Section (RCS), detection distance and angle with the change of time, the detection probability, tracking coefficient and resource redundancy rate of 3 kinds of radar detection performance evaluation indicators are put forward, GBR forward deployment, relay deployment and reclaiming deployment way affect the detection performance to near-space hypersonic target are simulation analyzed. The results show that the detection effect of forward deployment combines relay deployment is good, forward deployed found the target distance for the first time is far that can provide the longer warning time, the tracking time of reclaiming deployment is short and has high resource redundancy rate. It has certain practical significance and engineering practical and can provide a theoretical basis and technical support to the deployment of GBR for near-space early warning system.
-
Key words:
- Ground-Based Radar (GBR) /
- Deployment /
- Near-space /
- Hypersonic /
- Detection performance
-
朱志良, 葉寧, 劉軍, 等. 基于臨近空間飛行器的區(qū)域自組網(wǎng)優(yōu)化部署算法[J]. 電子與信息學(xué)報(bào), 2011, 33(4): 915-920. Zhu Zhi-liang, Ye Ning, Liu Jun, et al.. Deployment optimization algorithm for regional MANET containing near space vehicles as a part[J]. Journal of Electronics Information Technology, 2011, 33(4): 915-920. 肖松, 譚賢四, 王紅, 等. 臨近空間高超聲速目標(biāo)斷續(xù)點(diǎn)跡航跡起始方法[J]. 華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2014, 42(3): 52-57. Xiao Song, Tan Xian-si, Wang Hong, et al.. Feasible track initiation method for near space hypersonic target[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2014, 42(3): 52-57. 曾開春, 向錦武. 高超聲速飛行器飛行動力學(xué)特性不確定分析[J]. 航空學(xué)報(bào), 2013, 34(4): 798-808. Zeng Kai-chun and Xiang Jin-wu. Uncertainty analysis of flight dynamic characteristics for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4): 798-808. Zhao Jing, Jiang Bin, Shi Peng, et al.. Adaptive dynamic sliding mode control for near space vehicles under actuator faults[J]. Circuits System and Signal Processing, 2013, 32(5): 2281-2296. Huang Wei, Ma Lin, and Wang Zhen-guo. A parametric study on the aerodynamic characteristics of a hypersonic waverider vehicle[J]. Acta Astronautica, 2011, 69(3/4): 135-140. 李羅鋼, 荊武興, 高長生. 基于預(yù)警衛(wèi)星系統(tǒng)的臨近空間飛行器跟蹤[J]. 航空學(xué)報(bào), 2014, 35(1): 105-114. Li Luo-gang, Jing Wu-xing, and Gao Chang-sheng. Tracking near space vehicle using early-warning satellite[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 105-114. 汪連棟, 曾勇虎, 高磊, 等. 臨近空間高超聲速目標(biāo)雷達(dá)探測技術(shù)現(xiàn)狀與趨勢[J]. 信號處理, 2014, 30(1): 72-85. Wang Lian-dong, Zeng Yong-hu, Gao Lei, et al.. Technology status and development trend for radar detection of hypersonic target in near space[J]. Journal of Signal Processing, 2014, 30(1): 72-85. Ling Yang, Jing Liang, and Liu Wei-wei. Graphical deployment strategies in radar sensor networks (RSN) for target detection[J]. EURASIP Journal on Wireless Communications and Networking, 2013, 2013(1): 1-9. Gao Shang. Optimal deployment problems of radar network [J]. Research Journal of Applied Sciences Engineering and Technology, 2013, 6(10): 1879-1883. 李奇. 基于分布式算法的雷達(dá)組網(wǎng)抗干擾優(yōu)化部署研究[D]. [碩士論文], 西安電子科技大學(xué), 2013. Li Qi. Research on optimized anti-jamming development model of radar networks based on distributed algorithm[D]. [Master dissertation], Xidian University, 2013. 熊軍. 基于遺傳算法的雷達(dá)網(wǎng)優(yōu)化部署研究[D]. [碩士論文], 山西師范大學(xué), 2013. Xiong Jun. Radar network deployment optimization based on genetic algorithm research[D]. [Master dissertation], Shanxi Normal University, 2013. 劉彥君, 黃金才, 王江. 有源干擾條件下基于NSGA-Ⅱ的雷達(dá)網(wǎng)優(yōu)化部署方法[J]. 指揮控制與仿真, 2014, 36(1): 36-40. Liu Yan-jun, Huang Jin-cai, and Wang Jiang. Optimal deployment of radar network based on NSGA-Ⅱ under active jamming[J]. Command Control Simulation, 2014, 36(1): 36-40. 李惠峰. 高超聲速飛行器制導(dǎo)與控制技術(shù)[M]. 北京: 中國宇航出版社, 2012: 36-120. Li Hui-feng. Hypersonic Vehicle Guidance and Control Technique[M]. Beijing: China Astronautic Publishing House, 2012: 36-120. 樂嘉陵. 再入物理[M]. 北京: 國防工業(yè)出版社, 2005: 40-98. Yue Jia-ling. Reentry Physical[M]. Beijing: National Defense Industry Press, 2005: 40-98. Marini J W. On the decrease of the radar cross section of the apollo command module due to reentry plasma effects[R]. Washington: National Aeronautics and Space Administration, 1968. Huber P. Hypersonic shock-heated flow parameters for velocities to 46,000 feet per second and altitudes to 323,000 feet[R]. Washington: National Aeronautics and Space Administration, 1963. 張毅, 肖龍旭, 王順宏. 彈道導(dǎo)彈彈道學(xué)[M]. 長沙: 國防科技大學(xué)出版社, 1999: 261-282. Zhang Yi, Xiao Long-xu, and Wang Shun-hong. Ballistic Ballistics[M]. Changsha: National Defense University 1999: 261-282. 李志淮, 譚賢四, 王紅, 等. 基于運(yùn)動參數(shù)估計(jì)的高超聲速目標(biāo)檢測方法研究[J]. 宇航學(xué)報(bào), 2012, 33(3): 346-352. Li Zhi-huai, Tan Xian-si, Wang Hong, et al.. Detection algorithm for hypersonic targets based on motion parameter estimation[J]. Journal of Astronautics, 2012, 33(3): 346-352. -
計(jì)量
- 文章訪問數(shù): 1903
- HTML全文瀏覽量: 259
- PDF下載量: 536
- 被引次數(shù): 0