脈間Costas跳頻脈內(nèi)多載波混沌相位編碼雷達(dá)信號設(shè)計與分析
doi: 10.11999/JEIT140653 cstr: 32379.14.JEIT140653
-
1.
(西北工業(yè)大學(xué)電子信息學(xué)院 西安 710072)
-
3.
(西安郵電大學(xué)通信與信息工程學(xué)院 西安 710112)
航空科學(xué)基金(20112053018)資助課題
Design and Analysis of Inter-pulse Costas Frequency Hopping and Intra-pulse Multi-carrier Chaotic Phase Coded Radar Signal
-
1.
(School of Electronics and Information, Northwestern Polytechnical University, Xi&rsquo
-
2.
(School of Electronics and Information, Northwestern Polytechnical University, Xi&rsquo
-
3.
(School of Telecommunication and Information Engineering, Xi&rsquo
-
摘要: 該文在步進(jìn)頻信號的基礎(chǔ)上,把基于混沌調(diào)制的多載波相位編碼(Multi-Carrier Phase Coded, MCPC)信號作為子脈沖,用Costas跳頻代替頻率的線性步進(jìn),設(shè)計出脈間Costas跳頻脈內(nèi)多載波混沌相位編碼(Inter-Pulse Costas frequency hopping and intra-pulse Multi-Carrier Chaotic Phase Coded, IPC-MCCPC)雷達(dá)信號,并對其模糊函數(shù)及自相關(guān)性能進(jìn)行了研究。仿真分析表明,該文設(shè)計的信號繼承了步進(jìn)頻信號用較小的瞬時帶寬合成較大的工作帶寬的優(yōu)點,同時有效克服了步進(jìn)頻信號存在的距離-速度耦合的缺點。脈內(nèi)多載波特性使得這種信號在保持總帶寬和步進(jìn)頻信號相等的條件下減少跳頻階數(shù),從而提高信號處理的數(shù)據(jù)率;混沌調(diào)相的引入使得這種信號具有更強的保密性;脈間頻率的隨機跳變使其模糊函數(shù)具有更低的周期性旁瓣。這種信號眾多的參數(shù)、靈活的結(jié)構(gòu)及較大的調(diào)制復(fù)雜度,增加了偵察接收機匹配和識別的難度,從而提高雷達(dá)的反截獲性能。Abstract: Through taking the Multi-Carrier Phase Coded (MCPC) signal as the subpulse, and replacing the linear frequency step with the Costas frequency hopping, a new Inter-Pulse Costas frequency hopping and intra-pulse Multi-Carrier Chaotic Phase Coded (denoted by IPC-MCCPC) radar signal is designed on the basis of stepped-frequency signal. The ambiguity function and autocorrelation performance of the designed signal are studied. Simulation results show that the designed signal carries forward the advantage that the stepped-frequency signal achieves a larger operating bandwidth by instantaneous bandwidth synthesis, and overcomes the defect of range-velocity coupling caused by frequency-stepped. The interpulses multi-carrier characteristic can decrease the frequency stepped pulse number under the condition of keeping the total bandwidth as same as the stepped-frequency signal, thus increases the data rate of signal processing. The designed signal has stronger secrecy due to the introduction of chaotic phase modulation. The ambiguity function of designed signal has lower periodic side lobe because the Costas frequency hopping. Besides that, the designed signal has flexible structure, numerous parameters and complex modulation mode makes it more difficult to be identified by reconnaissance receivers, so the anti-intercept ability of radar system is greatly improved.
-
Key words:
- Radar /
- Chaotic /
- Costas /
- Multi-Carrier Phase Coded (MCPC) /
- Ambiguity function
-
Piezzo M, De Maio A, Aubry A, et al.. Cognitive radar waveform design for spectral coexistence[C]. Proceedings of the 2013 IEEE Radar Conference (RADAR), Ottawa, Canada, 2013: 1-4. Wang L, Fu X, Shi L, et al.. Radar waveform design under the constraint of auto-correlation, orthogonality and Doppler tolerance[C]. Proceedings of the IET International Radar Conference, Xian, China, 2013: 1-4. Stove A G, Hume A L, and Baker C J. Low probability of intercept radar strategies[J]. IEE Proceedings-Radar, Sonar and Navigation, 2004, 151(5): 249-264. 張錫熊. 低截獲概率(LPI)雷達(dá)的發(fā)展[J]. 現(xiàn)代雷達(dá), 2003, 25(12): 1-4. Zhang Xi-xiong. Development of LPI radar[J]. Modern Radar, 2003, 25(12): 1-4. Levanon N. Multifrequency complementary phase-coded radar signal [J]. IEE Proceeding-Radar, Sonar and Navigation, 2000, 147(6): 276-284. Levanon N and Mozeson E. Radar Signals [M]. New York, John Wiley Sons, 2004: 74-95. 鄧斌. 多載頻相位編碼雷達(dá)信號設(shè)計與處理技術(shù)研究[D]. [博士論文], 國防科技大學(xué), 2011: 53-64. Deng Bin. Research on the signal designing and processing of multi-carrier phase coded radar[D]. [Ph.D. dissertation], National University of Defense Technology, 2011: 53-64. Lellouch G and Mishra A K. Multi-carrier based radar signal optimization using genetic algorithm[C]. Proceedings of the Third International Conference on Soft Computing for Problem Solving, Greater Noida, India, 2014: 525-534. Levanon N. Stepped-frequency pulse-train radar signal[J]. IEE Proceedings-Radar, Sonar and Navigation, 2002, 149(6): 297-309. Liu Yi-min, Huang Tiao-yao, Meng Hua-dong, et al.. Fundamental limits of HRR profiling and velocity compensation for stepped-frequency waveforms[J]. IEEE Transactions on Signal Processing, 2014, 62(17): 4490-4504. Gill G S. Step frequency waveform design and processing for detection of moving targets in clutter[C]. Proceedings of the IEEE 1995 International Radar Conference, Alexandria, Egypt, 1995: 573-578. 霍凱, 姜衛(wèi)東, 黎湘, 等. 一種新的OFDM相位編碼頻率步進(jìn)雷達(dá)信號及其特性[J]. 電子與信息學(xué)報, 2011, 33(3): 677-683. Huo Kai, Jiang Wei-dong, Li Xiang, et al.. A new OFDM phase-coded stepped-frequency radar signal and its characteristic[J]. Journal of Electronics Information Technology, 2011, 33(3): 677-683. Taylor K, Rickard S, and Drakakis K. Costas arrays, number of hops, and time-bandwidth product[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(3): 1995-2004. Yue L, Run W, Yongping H, et al.. Super-resolution imaging realization of costas signal[J]. TELKOMNIKA Indonesian Journal of Electrical Engineering, 2014, 12(2): 1374-1384. Huang Jen-fa, Yang Chao-chin, and Huang Chun-ming. On analyzing quasi-cyclic LDPC codes over modified welch- costas-coded optical CDMA sysytem[J]. IEEE Journal of Light Wave Technology, 2009, 27(12): 2150-2158. Mahafza B R and Elsherbeni A Z. MATLAB Simulations for Radar Systems Design [M]. London, Chapman Hall, 2003: 202-212. Boccaletti S, Grebogi C, Lai Y C, et al.. The control of chaos: theory and application [J]. Physics Reports, 2000(329): 103-197. Carroll T L. Adaptive chaotic maps for identification of complex targets[J]. IET Radar, Sonar Navigation, 2008, 2(4): 256-262. Franken G E A, Hikookar H, and van Genderen P. Doppler tolerance of OFDM-coded radar signals[C]. Proceedings of the 3rd European Radar Conference (EuRAD 2006), Manchester, UK, 2006: 108-111. -
計量
- 文章訪問數(shù): 2071
- HTML全文瀏覽量: 173
- PDF下載量: 528
- 被引次數(shù): 0