面向VR應用的花卉植物物理渲染技術研究與實現
doi: 10.11999/JEIJ170995 cstr: 32379.14.JEIJ170995
-
(北京林業(yè)大學信息學院 北京 100083)
基金項目:
國家自然科學基金(31770589),北京林業(yè)大學創(chuàng)新團隊項目(2015ZCQ-XX)
Research and Implementation on Flower Plants Rendering Technology Based on Physical Light Simulation for VR Application
-
HUAI Yongjian ZHANG Han ZHANG Shuai
Funds:
The National Natural Science Foundation of China (31770589), The Innovation Team Project of Beijing Forestry University (2015ZCQ-XX)
-
摘要: 花卉植物高真實感的仿真交互是目前虛擬植物可視化研究的一個重要方向。隨著虛擬現實技術的普及,越來越多的應用采用了VR頭戴設備的呈現方式。VR系統(tǒng)需要高度真實的沉浸感畫面,通用的植物建模和圖形引擎渲染功能已不能滿足該需求。該文通過分析光照原理并融合基于物理的渲染技術,提出基于雙向散射分布函數BSDF的花卉植物高度真實感的物理渲染算法,利用ShaderLab,對幾種盆栽花卉植物在光照下進行仿真,并對融合算法做優(yōu)化處理。針對VR頭盔設備HTC Vive的成像效果,對圖像進行扭曲變形優(yōu)化,使畫面更符合人眼雙目立體視覺成像效果,增強系統(tǒng)沉浸感。最后基于該方法設計并實現了一個頭盔式VR花卉植物仿真模擬系統(tǒng),獲得了逼真的場景漫游體驗效果。Abstract: The high realism simulation interaction of flower plants is an important direction of virtual plant visualization. More and more applications are presented by the Virtual Reality (VR) headset device with the popularity of virtual reality technology. The VR system requires a highly realistic immersive picture for which generic plant modeling and graphics engine rendering capabilities are no longer sufficient. In this paper, a physical rendering algorithm is proposed based on Bidirectional Scattering Distribution Function (BSDF) to realistic flower plants by analyzing the principle of illumination and combining the Physics-Based Shading (PBS) technology. Potted flora in light mode is simulated by ShaderLab and the fusion algorithm is optimized. The image is distorted by lens matching rendering technology to make the virtual scene closer to the real human eye vision and reduce the user vertigo when user wearing the VR headset when using the VR helmet equipment HTC Vive. Finally a helmet VR floral plant simulation system is designed and a realistic immersive scene is realized.
-
巫影, 何琳, 黃映云, 等. 虛擬現實技術綜述[J]. 計算機與數字工程, 2002, 30(3): 41-44.doi: 10.3969/j.issn.1672-9722. 2002.03.007. WU Ying, HE Lin, HUANG Yingyun, et al. Summarizing of virtual reality technology[J]. Computer and Digital Engineering, 2002, 30(3): 41-44. doi: 10.3969/j.issn.1672- 9722.2002.03.007 MA Wei and ZHA Hongshan. Realistic rendering of small- scale plants[J]. Journal of Computer-Aided Design & Computer Graphics, 2009, 21(4): 505-510. HUAI Yongjian and ZENG Xi. Visual simulation of morphology and growth of virtual flower plants[J]. Computer Engineering and Applications, 2012, 48(8): 185-188. doi: 10.3778/j.issn.1002-8331.2012.08.053. MA Ruishi and BAI Shunxian. Image based plant leaves wither deformation measurement simulation[J]. Computer Simulation, 2012, 29(10): 302-305. doi: 10.3969/j.issn.1006- 9348.2012.10.072. ZHANG Ming. Research and realization of dynamic simulation technology for 3D diversion process[D]. [Master dissertation], Xiamen University, 2009. HUAI Yongjian and LI Fan. Simulation on motion behavior of virtual flower in variable wind fields[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(19): 130-136. doi: 10.3969/j.issn.1002-6819.2012.19.017. MENG Xiangyan, REN Yumiao, and PAN Haixian. Algorithm for illumination and shadow model in realistic volume rendering[J]. Laser Journal, 2016, 37(8): 141-144. doi: 10.14016/j.cnki.jgzz.2016.08.141. ZHAO Hui. Simulation of vegetation realism based on radiation method[D]. [Master dissertation], Jilin University, 2014. TANG Yong, ZHANG Lihui, L? Mengya, et al. Research progress in real time modeling and rendering for realistic ocean scene[J]. Journal of Yanshan University, 2016, 40(6): 471-480. doi: 10.3969/j.issn.1007-791X.2016.06.001. CHEN Shengyu. Drawing and dynamic simulation of complex vegetation scene based on GPU[D]. [Master dissertation], University of Electronic Science and Technology of China, 2016. [11] GAO Yuan, LIU Yue, CHENG Dewen, et al. A review on development of head mounted display[J]. Journal of Computer-Aided Design & Computer Graphics, 2016, 28(6): 896-904. doi: 10.3969/j.issn.1003-9775.2016.06.004. XIE Yonghua, YUAN Fuxing, and WANG Chang. Research of 3D cloud illumination model based on importance sampling[J]. Journal of System Simulation, 2016, 28(1): 57-62. [13] KAJIYA J T. The rendering equation[J]. ACM Siggraph Computer Graphics, 1986, 20(4): 143-150. doi: 10.1145/15922. 15902. [14] STAM J. Diffraction shaders[J]. Proc Acm Siggraph, 1999, 11(4): 101-110. doi: 10.1145/311535.311546. [15] SADEGHI I, LAVEN P, LAVEN P, et al. Physically-based simulation of rainbows[J]. Acm Transactions on Graphics, 2012, 31(1): 3. doi: 10.1145/2077341.2077344. WU Fukun, WU Jiaze, and ZHENG Changwen. A microfacet-based physically rendering of diffraction effects[J]. Journal of Computer-Aided Design & Computer Graphics, 2014, 26(1):1-9. [17] TORRANCE K E and SPARROW E M. Theory for off-specular reflection from roughened surfaces[J]. Journal of the Optical Society of America, 1967, 57(9): 1105-1114. doi: 10.1364/JOSA.57.001105 [18] OBERST H, KOUZNETSOV D, SHIMIZU K, et al. Fresnel diffraction mirror for an atomic wave[J]. Physical Review Letters, 2005, 94(1): 013203. doi: 10.1103/PhysRevLett.94. 01320314JANUARY2005. [19] SCHLICK C. An inexpensive BRDF model for physically- based rendering[J]. Computer Graphics Forum, 1994, 13(3): 233-246. doi: 10.1007/s00371-014-0958-x. -
計量
- 文章訪問數: 1788
- HTML全文瀏覽量: 202
- PDF下載量: 69
- 被引次數: 0