一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標(biāo)題
留言內(nèi)容
驗證碼

基于公理化模糊子集的改進(jìn)譜聚類算法

趙小強 劉曉麗

趙小強, 劉曉麗. 基于公理化模糊子集的改進(jìn)譜聚類算法[J]. 電子與信息學(xué)報, 2018, 40(8): 1904-1910. doi: 10.11999/IEIT170904
引用本文: 趙小強, 劉曉麗. 基于公理化模糊子集的改進(jìn)譜聚類算法[J]. 電子與信息學(xué)報, 2018, 40(8): 1904-1910. doi: 10.11999/IEIT170904
Xiaoqiang ZHAO, Xiaoli LIU. An Improved Spectral Clustering Algorithm Based on Axiomatic Fuzzy Set[J]. Journal of Electronics & Information Technology, 2018, 40(8): 1904-1910. doi: 10.11999/IEIT170904
Citation: Xiaoqiang ZHAO, Xiaoli LIU. An Improved Spectral Clustering Algorithm Based on Axiomatic Fuzzy Set[J]. Journal of Electronics & Information Technology, 2018, 40(8): 1904-1910. doi: 10.11999/IEIT170904

基于公理化模糊子集的改進(jìn)譜聚類算法

doi: 10.11999/IEIT170904 cstr: 32379.14.IEIT170904
基金項目: 國家自然科學(xué)基金(61763029),甘肅省基礎(chǔ)研究創(chuàng)新群體基金(1506RJIA031)
詳細(xì)信息
    作者簡介:

    趙小強:男,1969年生,博士生導(dǎo)師,教授,主要研究方向為數(shù)據(jù)挖掘、故障診斷、圖像處理、污水處理、生產(chǎn)調(diào)度等

    劉曉麗:女,1992年生,碩士生,研究方向為數(shù)據(jù)挖掘

    通訊作者:

    趙小強 ? xqzhao@lut.cn

  • 中圖分類號: TP181

An Improved Spectral Clustering Algorithm Based on Axiomatic Fuzzy Set

Funds: The National Natural Science Foundation of China (61763029), The Gansu Province Basic Research Innovation Group Fund (1506RJIA031)
  • 摘要: 譜聚類算法通常是采用高斯核作為相似性度量,并利用所有可用的特征來構(gòu)建具有歐氏距離的相似度矩陣,數(shù)據(jù)集復(fù)雜度會影響其譜聚類性能,因此該文提出一種基于公理化模糊子集(AFS)的改進(jìn)譜聚類算法。首先結(jié)合AFS算法,利用識別特征來衡量更合適的數(shù)據(jù)成對相似性,生成更強大的親合矩陣;再有效地利用Nystr?m采樣算法,計算采樣點間以及采樣點和剩余點間的相似度矩陣去降低計算的復(fù)雜度;最后通過在不同數(shù)據(jù)集以及圖像分割上進(jìn)行實驗,證明了提出算法的有效性。
  • 圖  1  原圖

    圖  2  譜聚類算法分割結(jié)果

    圖  3  本文算法分割結(jié)果

    表  1  數(shù)據(jù)集特征

    數(shù)據(jù)集 數(shù)據(jù)總數(shù) 類數(shù) 維數(shù)
    Iris 150 3 4
    Heart 270 2 13
    Sonar 208 2 60
    Wine 178 3 13
    Protein 552 8 77
    Hepatitis 155 2 19
    Segmentation 2310 7 19
    Pen digits 10992 10 16
    下載: 導(dǎo)出CSV

    表  2  數(shù)據(jù)集的CE(%)

    數(shù)據(jù)集 SC STSC AFS 本文算法
    Iris 10.71 7.46 9.72 7.63
    Heart 20.96 22.13 30.63 12.42
    Sonar 44.53 46.83 38.52 33.60
    Wine 2.92 2.91 3.54 3.13
    Protein 54.70 55.67 55.12 48.87
    Hepatitis 30.76 38.73 32.34 23.20
    Segmentation 22.08 21.35 31.17 18.63
    Pen digits 25.37 24.25 22.16
    下載: 導(dǎo)出CSV

    表  3  數(shù)據(jù)集的NMI(%)

    數(shù)據(jù)集 SC STSC AFS 本文算法
    Iris 75.87 78.63 78.06 85.49
    Heart 28.54 26.23 18.45 40.33
    Sonar 7.32 1.83 15.47 22.38
    Wine 89.30 89.34 85.67 87.96
    Protein 54.43 48.24 36.62 65.80
    Hepatitis 13.75 4.78 3.57 17.42
    Segmentation 65.58 66.72 58.56 72.24
    Pen digits 60.53 61.48 66.52
    下載: 導(dǎo)出CSV

    表  4  SAR圖像分割性能對比表

    譜聚類算法 本文算法
    運行時間(S) 30.62 3.27
    誤分率(%) 9.53 5.34
    下載: 導(dǎo)出CSV

    表  5  樹圖像分割性能對比表

    譜聚類算法 本文算法
    運行時間(S) 16.39 4.25
    誤分率(%) 6.87 2.13
    下載: 導(dǎo)出CSV

    表  6  復(fù)雜度分析

    計算步驟 復(fù)雜度
    計算矩陣 ${{A}}$ O(n2)
    計算矩陣 ${{B}}$ O(n(Nn))
    若矩陣 ${{A}}$正定 對 ${{A}}$矩陣分解 O(n3)
    求解矩陣 ${{p}}$ O(n2(Nn))
    矩陣分解 O(n3)
    求解矩陣 ${{Y}}$ O(n2N)
    若矩陣 ${{A}}$非正定 求解矩陣 ${{S}}$ O(n2N)
    對矩陣 ${{S}$對角分解 O(n3)
    求解矩陣 ${{Y}}$ O(n2N)
    K-means算法進(jìn)行聚類 O(nK2T)
    下載: 導(dǎo)出CSV
  • JAIN A. Data clustering: a review[J]. ACM Computing Surveys, 1999, 31(3): 264–323. DOI: 10.1145/331499.331504
    XU Rui. Survey of Clustering Algorithms[M]. New Jersey: IEEE Press, 2005: 645–678. doi: 10.1109/TNN.2005.845141.
    RAMON-GONEN R and GELBARD R. Cluster evolution analysis: Identification and detection of similar clusters and migration patterns[J]. Expert Systems with Applications, 2017, 83: 363-378. DOI: 10.1016/j.eswa.2017.04.007.
    WITTEN I H and FRANK E. Data Mining: Practical Machine Learning Tools and Techniques[M]. Massachusetts: Morgan Kaufmann, 2005: 81–82. doi: 0120884070, 9780120884070.
    夏平, 任強, 吳濤, 等.融合多尺度統(tǒng)計信息模糊C均值聚類與Markov隨機場的小波域聲納圖像分割[J]. 兵工學(xué)報, 2017, 38(5): 940-948. DOI: 10.3969/j.issn.1000-1093.2017.05.014.

    XIA Ping, REN Qiang, WU Tao, et al. Sonar image segmentation fusion of multi-scale statistical information FCM clustering and MRF model in wavelet domain[J]. Acta Armamentaria, 2017, 38(5): 940-948. DOI: 10.3969/j.issn.1000-1093.2017.05.014.
    TREVOR H, ROBERT T, and FRIEDMAN J J H. The Elements of Statistical Learning[M]. New York: Springer, 2001: 460–514. doi: 10.1198/jasa.2004.s339.
    李武, 趙嬌燕, 嚴(yán)太山.基于平均差異度優(yōu)選初始聚類中心的改進(jìn)K-均值聚類算法[J]. 控制與決策, 2017, 32(4): 759-762. DOI: 10.13195/j.kzyjc.2016.0274.

    LI Wu, ZHAO Jiaoyan, and YAN Taishan. Improved K-means clustering algorithm optimizing initial clustering centers based on average difference degree[J]. Control and Decision, 2017, 32(4): 759-762. DOI: 10.13195/j.kzyjc.2016.0274.
    CHEN Weijie and GIGER M L. A fuzzy c-means (fcm) based algorithm for intensity inhomogeneity correction and segmentation of MR images[C]. IEEE International Symposium on Biomedical Imaging, Nano to Macro Marriott Crystal Gateway, Arlington, 2005, 2: 1307–1310. doi: 10.1109/ISBI.2004.1398786.
    蔡曉妍, 戴冠中, 楊黎斌.譜聚類算法綜述[J]. 計算機科學(xué), 2008, 35(7): 14-18. DOI: 10.3969/j.issn.1002-137X.2008.07.004.

    CAI Xiaoyan, DAI Guanzhong, and YANG Libin. Survey on spectral clustering algorithms[J]. Computer Science, 2008, 35(7): 14-18. DOI: 10.3969/j.issn.1002-137X.2008.07.004.
    ZELNIK-MANOR L and PERONA P. Self-tuning spectral clustering[C]. Advances in Neural Information Processing Systems, Vancouver, 2004: 1601–1608.
    YANG Peng, ZHU Qingsheng, and HUANG Biao. Spectral clustering with density sensitive similarity function[J]. Knowledge-Based Systems, 2011, 24(5): 621-628. DOI: 10.1016/j.knosys.2011.01.009.
    JAIN A K. Data Clustering: 50 Years Beyond K-means[M]. Machine Learning and Knowledge Discovery in Databases. Springer Berlin Heidelberg, 2008: 651–666. doi: 10.1007/978-3-540-87479-9_3.
    ZHU Xiatian, CHEN Change Loy, and GONG Shaogang. Constructing robust affinity graphs for spectral clustering[C]. Computer Vision and Pattern Recognition. IEEE, Ohio, 2014: 1450–1457. doi: 10.1109/CVPR.2014.188.
    GONG Shaogang, CHEN Change Loy, and XIANG Tao. Security and Surveillance[M]. Visual Analysis of Humans. Springer London, 2011: 455–472. doi: 10.1007/978-0-85729-997-0_23.
    PAVAN M and PELILLO M. Dominant sets and pairwise clustering[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2006, 29(1): 167-172. DOI: 10.1109/TPAMI.2007.10.
    丁世飛, 賈洪杰, 史忠植. 基于自適應(yīng) 采樣的大數(shù)據(jù)譜聚類算法[J]. 軟件學(xué)報, 2014, (9): 2037-2049. DOI: 10.13328/j.cnki.jos.004643.

    DING Shifei, JIA Hongjie, and SHI Zhongzhi. Spectral clustering algorithm based on adaptive Nystr?m sampling for big data analysis[J]. Journal of Software, 2014, (9): 2037-2049. DOI: 10.13328/j.cnki.jos.004643.
    LIU Xiaodong and REN Yan. Novel artificial intelligent techniques via AFS theory: Feature selection, concept categorization and characteristic description [J]. Applied Soft Computing, 2010, 10(3): 793-805. DOI: 10.1016/j.asoc.2009.09.009.
    LIH Xiaodong, WANG Xianchang, and PEDRYCZ W. Fuzzy clustering with semantic interpretation[J]. Applied Soft Computing, 2015, 26: 21-30. DOI: 10.1016/j.asoc.2014.09.037.
    BELONGIE S, FOWLKES C, FAN C, et al. Spectral partitioning with indefinite kernels using the Nystr?m extension[C]. European Conference on Computer Vision. Springer-Verlag, Denmark, 2002: 531–542. doi: 10.1007/3-540-47977-5_35.
    WU Mingrui. A local learning approach for clustering[C]. International Conference on Neural Information Processing Systems, Hong Kong, China, 2006: 1529–1536.
    STREHL A and GHOSH J. Cluster ensembles-aknowledge reuse framework for combining multiple partitions[J]. The Journal of Machine Learning Research, 2003, 3(3): 583-617. DOI: 10.1162/153244303321897735.
    HU Zhaoling, GUO Dazhi, and SHENG Yehua Extracting textural in formation of satellite SAR image based on wavelet decomposition[J]. Journa1 of Remote Sensing, 2001, 5: 423-427.
  • 加載中
圖(3) / 表(6)
計量
  • 文章訪問數(shù):  2146
  • HTML全文瀏覽量:  741
  • PDF下載量:  48
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2017-09-25
  • 修回日期:  2018-05-02
  • 網(wǎng)絡(luò)出版日期:  2018-05-30
  • 刊出日期:  2018-08-01

目錄

    /

    返回文章
    返回