大規(guī)模MIMO系統(tǒng)中聯(lián)合用戶分組和聯(lián)盟博弈的動態(tài)導(dǎo)頻分配方案
doi: 10.11999/5EIT190445 cstr: 32379.14.5EIT190445
-
安徽大學(xué)計算智能與信號處理教育部重點實驗室 合肥 230601
Dynamic Pilot Allocation Scheme for Joint User Grouping and Alliance Game in Massive MIMO Systems
-
Ministry of Education Key Laboratory of Computing Intelligent and Signal Processing, Anhui University, Hefei 230601, China
-
摘要:
大量研究表明,大規(guī)模MIMO系統(tǒng)中的小區(qū)邊緣用戶比中心用戶更易遭受導(dǎo)頻污染的影響。因此,該文提出一種聯(lián)合用戶分組和聯(lián)盟博弈(JUG-AG)的動態(tài)導(dǎo)頻分配方案來減輕系統(tǒng)導(dǎo)頻污染。根據(jù)用戶信號強度將所有用戶分為A,B兩組,把接收基站信號強度弱的小區(qū)邊緣用戶記為A組,剩余用戶則為B組。A組用戶使用相互正交的導(dǎo)頻,B組用戶則借助聯(lián)盟博弈來重復(fù)使用剩余的正交導(dǎo)頻。在B組用戶的聯(lián)盟博弈中,用戶被分成若干個互不相交的用戶子聯(lián)盟,屬于不同子聯(lián)盟的用戶分配不同的相互正交導(dǎo)頻序列,而屬于同一子聯(lián)盟中的用戶使用相同的導(dǎo)頻序列。與已有的導(dǎo)頻分配方案相比,該文提出的JUG-AG方案更靈活,可以用于所有用戶隨機分布的場景。而且,該算法通過循環(huán)搜索可以獲得整體最優(yōu)解。仿真結(jié)果表明JUG-AG方案能夠有效降低上行鏈路中用戶信號檢測的平均均方根誤差(RMSE),而且可以提高用戶的平均服務(wù)速率。
-
關(guān)鍵詞:
- 大規(guī)模多輸入多輸出 /
- 導(dǎo)頻污染 /
- 均方根誤差 /
- 服務(wù)速率 /
- 聯(lián)合用戶分組和聯(lián)盟博弈
Abstract:Many researches demonstrate that cell-edge users are more susceptible to pilot contamination than the cell-center users in massive MIMO systems. Therefore, this paper proposes a dynamic pilot allocation scheme called Joint User Grouping and Alliance Game (JUG-AG) to mitigate pilot contamination. According to the user signal strength, the users are divided into two groups, namely A and B. Users with weak strength of received Base Stations (BSs) signals are recorded as group A, and the remaining users are group B. The users of group A use mutually orthogonal pilots, and the users of group B reuse the remaining orthogonal pilots by means of alliance game. In the alliance game for the users of group B, users are divided into several disjoint user sub-alliances, users belonging to different sub-alliances are allocated different orthogonal pilot sequences, and users in the same sub-alliance reuse the same pilot sequence. Compared with the existing pilot allocation schemes, the proposed JUG-AG scheme is more flexible and can be used for scenarios that all users are randomly distributed. Moreover, the algorithm can obtain the overall optimal solution through cyclic searching. The simulation results demonstrate that the JUG-AG scheme can effectively reduce the average Root Mean Square Error (RMSE) of user signal detection in the uplink and improve the average service rate of users.
-
算法1 導(dǎo)頻分配算法 步驟 1 (用戶分組):計算所有用戶的${\eta _{iik}}$值,從小到大排序。
根據(jù)排序,優(yōu)選前$q$個值較小的用戶為A組,剩余($N - q$)個用戶為B組。步驟 2 (聯(lián)盟博弈): 初始化:對于B組用戶,給定初始聯(lián)盟結(jié)構(gòu)$\lambda = \{ {\lambda _1},{\lambda _2}, ···, {\lambda _{h - q}}\} $,并設(shè)當前搜索次數(shù)$\zeta = 0$。 循環(huán): (1) 對于所有用戶$(i,k) \in \varPhi \,\,$(即B用戶),進行循環(huán)搜索; (2) 對于所有${\lambda _j} \in \{ \{ {\lambda _1},{\lambda _2}, ···, {\lambda _{h - q}}{{\rm \} \backslash }}\Gamma (i,k)\} ,(j = 1,2,···,$ $h - q)$,進行查找: 效用函數(shù)為RMSE時,若聯(lián)盟調(diào)整規(guī)則1中兩個條件都滿足,則
有$\lambda {{\rm = }}\lambda ^0$。同理,效用函數(shù)為服務(wù)速率時,若聯(lián)盟調(diào)整規(guī)則2中兩
個條件都滿足,則有$\lambda {{\rm = }}\lambda ^0$。否則,聯(lián)盟結(jié)構(gòu)保持不變($\lambda {{\rm = }}\lambda $)。 結(jié)束(對應(yīng)循環(huán)2) 搜索次數(shù)增加,即$\zeta = \zeta + 1$, 結(jié)束(對應(yīng)循環(huán)1) 直到$\lambda \xrightarrow{{(i,k)}}\, \,{\lambda ^0}$的所有條件不成立或$\zeta > \varpi $,循環(huán)結(jié)束。 步驟 3 (導(dǎo)頻分配):A組用戶分配$q$個正交導(dǎo)頻,B組中($N - q$)個用戶根據(jù)第2步用戶子聯(lián)盟分配的結(jié)果將剩余$h - q$個正交導(dǎo)頻依次分配給這$h - q$個用戶子聯(lián)盟。 下載: 導(dǎo)出CSV
表 1 仿真參數(shù)設(shè)置
參數(shù) 數(shù)值 參數(shù) 數(shù)值 基站坐標(km) (4.0,4.0), (5.7,4.0),
(2.3,4.0), (4.9,5.5),
(3.1,5.5), (4.9,2.5),
(3.1,2.5)最大搜索次數(shù)$\varpi $ 800 小區(qū)數(shù)L 7 路徑衰落因子$\upsilon $ 3 用戶數(shù)N 20 導(dǎo)頻數(shù)h 8 下載: 導(dǎo)出CSV
-
ZHANG Ruoyu, ZHAO Honglin, ZHANG Jiayan, et al. Hybrid orthogonal and non-orthogonal pilot distribution based channel estimation in massive MIMO system[J]. Journal of Systems Engineering and Electronics, 2018, 29(5): 881–898. doi: 10.21629/JSEE.2018.05.01 KIM K, LEE J, and CHOI J. Deep learning based pilot allocation scheme (DL-PAS) for 5G massive MIMO system[J]. IEEE Communications Letters, 2018, 22(4): 828–831. doi: 10.1109/LCOMM.2018.2803054 ZHI Hui and HU Yanjun. Novel multi-cell precoding schemes for TDD massive MIMO systems[J]. Wireless Personal Communications, 2017, 97(4): 6111–6129. doi: 10.1007/s11277-017-4829-4 ZHU Xudong, WANG Zhaocheng, QIAN Chen, et al. Soft pilot reuse and multicell block diagonalization precoding for massive MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2016, 65(5): 3285–3298. doi: 10.1109/TVT.2015.2445795 張進彥, 金鳳, 尹禮欣. 大規(guī)模MIMO系統(tǒng)中基于用戶分類的動態(tài)導(dǎo)頻分配[J]. 電信科學(xué), 2017, 33(9): 76–84. doi: 10.11959/j.issn.1000-0801.2017212ZHANG Jinyan, JIN Feng, and YIN Lixin. Dynamic pilot assignment in massive MIMO system based on user classification[J]. Telecommunications Science, 2017, 33(9): 76–84. doi: 10.11959/j.issn.1000-0801.2017212 ZHU Xudong, WANG Zhaocheng, DAI Linglong, et al. Smart pilot assignment for massive MIMO[J]. IEEE Communications Letters, 2015, 19(9): 1644–1647. doi: 10.1109/LCOMM.2015.2409176 KU Li, FAN Jiancun, and DENG Jianguo. Low complexity pilot allocation in massive MIMO systems[C]. The 8th IEEE International Conference on Communication Software and Networks, Beijing, China, 2016: 402–406. AKBAR N, YANG Nan, SADEGHI P, et al. Multi-cell multiuser massive MIMO networks: User capacity analysis and pilot design[J]. IEEE Transactions on Communications, 2016, 64(12): 5064–5077. doi: 10.1109/TCOMM.2016.2614674 JING Xiaorong, LI Mengwan, LIU Hongqing, et al. Superimposed pilot optimization design and channel estimation for multiuser massive MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2018, 67(12): 11818–11832. doi: 10.1109/TVT.2018.2875480 CASTA?EDA GARCIA M H and LUO Jian. Time-shifted pilots multiplexed with uplink data and unequal power allocation[C]. 2018 IEEE Wireless Communications and Networking Conference, Barcelona, Spain, 2018: 1–6. GAO Hongyuan, SU Yumeng, ZHANG Shibo, et al. Antenna selection and power allocation design for 5G massive MIMO uplink networks[J]. China Communications, 2019, 16(4): 1–15. GUO Kaifeng, GUO Yan, and ASCHEID G. Energy-efficient uplink power allocation in multi-cell mu-massive-MIMO systems[C]. The 21th European Wireless Conference, Budapest, Hungary, 2015: 1–5. AHMADI H, FARHANG A, MARCHETTI N, et al. A game theoretic approach for pilot contamination avoidance in massive MIMO[J]. IEEE Wireless Communications Letters, 2016, 5(1): 12–15. doi: 10.1109/LWC.2015.2487261 MOCHAOURAB R, BJ?RNSON E, and BENGTSSON M. Adaptive pilot clustering in heterogeneous massive MIMO networks[J]. IEEE Transactions on Wireless Communications, 2016, 15(8): 5555–5568. doi: 10.1109/TWC.2016.2561289 BOGOMOLNAIA A and JACKSON M O. The stability of hedonic coalition structures[J]. Games and Economic Behavior, 2002, 38(2): 201–230. doi: 10.1006/game.2001.0877 OSBORNE M J and RUBINSTEIN A. A Course in Game Theory[M]. Cambridge, USA: MIT Press, 1994: 255–298. -