遞歸時(shí)空信息融合技術(shù)及其在毫米波與紅外目標(biāo)識(shí)別中的應(yīng)用
RECURSIVE TEMPORAL-SPATIAL INFORMATION FUSION TECHNIQUE AND ITS APPLICATIONS TO MMW AND INFRARED TARGET IDENTIFICATION
-
摘要: 本文使用Dempster-Shafer技術(shù)討論了遞歸時(shí)空信息融合的集中(或分配)算法。與Bayes算法相比,Dempster-Shafer技術(shù)具有較強(qiáng)的處理信息的不確定性的能力。集中算法是將所有信息匯集于中心處理器中進(jìn)行處理;而分配算法則是依靠各分散的分處理器分擔(dān)運(yùn)算量,這樣可增加計(jì)算能力。改進(jìn)的算法可有效地應(yīng)用于采用兩種探測(cè)器的目標(biāo)識(shí)別:毫米波輻射計(jì)、紅外搜索和跟蹤探測(cè)器。Abstract: Centralized/distributed recursive algorithms for temporal-spatial information integration are discussed by using the Dempster-shafer technique.Compared with the Bayesiar approach ,the Dempster-shafer technique has a strong capability of handling information uncertainties.All information is pooled into the central processor in the centralized integration algorithm.In contrast,the distributed algorithm shares the computation burden among the local processors,which increase the computational efficiency.The developed algorithms are applied to a target identification problem with two sensors:millimeter wave radiometer,infrared searching and tracking
-
Luo R C, Kay M G. IEEE Trans. on SMC, 1989, SMC-19(5): 901-931.[2]Hong L. IEEE Trans. on AES, 1991, AES-27(2): 370-379.[3]Pearl J. Probabilitic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Mateo, CA: Morgan Kaufmann Publishers, 1988, 51-65.[4]Shafer G. A Mathematical Theory of Evidence. Princeton, NJ: Princeton University Press, 1976, 121-143.[5]Waltz E, Llinas J. Multisensor Data Fusion. Boston, MA: Artech House, 1990, 13-70.[6]Klir G J, Folger T A. Fuzzy Sets, Uncertainty, and Information. Englewood Cliffs, NJ: Prentice Hall, 1988.[7]Hong L, Lynch A. IEEE Trans. on AES, 1993, AES-29(2): 443-444.[8]李興國(guó).毫米波近感技術(shù)及其應(yīng)用.北京:國(guó)防工業(yè)出版社,1989,22-90.[9]廖蘇鵬.無(wú)線電探測(cè)系統(tǒng)目標(biāo)識(shí)別方法的研究:[博士論文].華東工學(xué)院,1992, 73-77. -
計(jì)量
- 文章訪問(wèn)數(shù): 2265
- HTML全文瀏覽量: 194
- PDF下載量: 385
- 被引次數(shù): 0