威伯爾和對數(shù)正態(tài)噪聲中的檢測問題
DETECTION IN WEIBULL AND LOG-NORMAL NOISES
-
摘要: 本文研究窄帶非高斯(non-Gaussian)噪聲中窄帶相參和非相參脈沖串信號的離散時間檢測。導出了局部最佳(LO)檢測器結構,它具有在窄帶高斯噪聲中的尼曼-皮爾遜(Neyman-Pearson)最佳檢測器里引入局部最佳零記憶非線性(LOZNL)的形式。許多實用檢測器屬于與LO檢測器相同類型的結構,導出了這些檢測器功效的表達式,特別研究了威伯爾(Weibull)和對數(shù)正態(tài)噪聲模型。導出了LOZNL和檢測器功效,并用曲線給出了數(shù)值結果。說明在皮特曼(Pitman)的漸近相對效率(ARE)意義上,許多具有能更多抑制噪聲包絡分布尾部的非線性的檢測器,其漸近性能明顯優(yōu)于窄帶高斯噪聲中的尼曼-皮爾遜最佳檢測器。
-
關鍵詞:
Abstract: The discrete-time detection of narrowband coherent and incoherent pulse train signals in narrowband non-Gaussian noise is investigated. The structures of local-opti-mum(LO) detector are developed and found to be in the form of incorporating a local-optimum zero-memory nonlinearity (LOZNL) into the Neyman-Pearson optimum detector for narrowband Gaussian noise. Many practical detectors belong to the same class of structures of the LO detector. The expressions for the efficacies of the detectors are derived. In particular, Weibull and log-normal noise models are considered. The LOZNLs and the efficacies of the detectors are given, and the numerical results are presented graphically. It is shown that, in the sense of Pitman asymptotic relative efficiency (ARE), the asymptotic performance of many detectors whose nonlinearity can more effectively suppress the tail of the noise envelope distribution is apparently better than that of the Neyman-Pearson optimum detector for narrowband Gaussian noise. -
J. W. Modestino and A. Y. Ningo, IEEE Trans. on IT, IT-25(1979), 592.[6]G. V. Trunk, IEEE Trans. on IT, IT-16(1970), 95.[7]E. Al-Hussaini and L. F. Turner, IEEE Trans. on IT, IT-25(1979), 124.[9]D. C. Schleher, IEEE Trans. on AES, AES-12(1976), 736.[10]J. Capon, IRE Trans. on IT, IT-7(1961), 67.[11]D. Middleton, IEEE Trans. on IT, IT-12(1966), 230. -
計量
- 文章訪問數(shù): 1835
- HTML全文瀏覽量: 173
- PDF下載量: 379
- 被引次數(shù): 0