用細(xì)胞神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)圖像恢復(fù)的一種新方法
A NEW APPROACH FOR IMAGE RESTORATION BASED ON CELLULAR NEURAL NETWORK
-
摘要: 文中提出并討論了用細(xì)胞神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)圖象最大熵恢復(fù)的可能性,并基于對最大熵方法的物理實(shí)質(zhì)分析推出了相應(yīng)細(xì)胞神經(jīng)網(wǎng)絡(luò)模板的新設(shè)計(jì)方法,針對二值圖象的恢復(fù)問題進(jìn)行了計(jì)算機(jī)仿真,結(jié)果證明了這一方法是可行的。Abstract: A new approach for image restoration based on Cellular Neural Network(CNN) is proposed. The physical meaning of Maximum Entropy (ME) is analyzed and a new template is proposed for ME binary image restoration. The result of computer simulation proves this approach is reasonable.
-
Chua L O, Yang L. Cellular neural network: Theory. IEEE Trans. on CAS, 1988, CAS-35(10)[2]57-1272.[3]Chua L O, Yang L. Cellular neural network: Applications. IEEE Trans. on CAS, 1988, CAS-[4](10): 1273-1290.[5]Venetianer P L, Werblin F, Roska T, Chua L O. Analogic CNN algorithms for some image[6]compression and restoration tasks. IEEE Trans. on CAS, 1995, CAS-42(5): 278-284.[7]Sziranyi T, Zerubia J. Markov random field image segmentation using CNN. IEEE Trans. on[8]CAS, 1997, CAS-44(1): 86-89.[9]曾朝輝.CNN在圖像處理中的應(yīng)用:[碩士論文1,北京:北京大學(xué)電子學(xué)系,1995.[10]Derin H, Elliot H. Modeling and segmentation of noisy textured image using GRF. IEEE Trans.[11]on PAMI, 1987, PAMI-9(1): 39-55.[12]Trussel H. The relationship between image restoration by the MAP method and a ME method.[13]IEEE Trans. on ASSP, 1980, ASSP-28(1): 114-117.[14]周新倫.數(shù)字圖像處理.北京:國防工業(yè)出版社,1986, 174-179.[15]Proc. IEEE Intl. Conf. Cellular Neural Network and Their Applications, CNNA-94, 1994, 3-8. -
計(jì)量
- 文章訪問數(shù): 1987
- HTML全文瀏覽量: 120
- PDF下載量: 648
- 被引次數(shù): 0