一種穩(wěn)健的四階累積量ESPRIT測(cè)向方法研究
A ROBUST ESPRIT DOA ESTIMATION METHOD BASED ON FOURTH-ORDER CUMULANT
-
摘要: 本文提出了一種基于四階累積量的ESPRIT超分辨陣列測(cè)向算法,該算法適用于任意形狀排列的空間陣列。通過對(duì)誤差模型的分析,發(fā)現(xiàn)該算法具有穩(wěn)健性,只要接收通道中任意兩個(gè)通道能保持一致,該算法就能得到正確的方向估計(jì)。計(jì)算機(jī)模擬驗(yàn)證了該算法的正確性。
-
關(guān)鍵詞:
- 陣列測(cè)向; 高階累積量; 旋轉(zhuǎn)不變算法; 模型誤差校正
Abstract: In this paper, a fourth-order cumulant-based ESPRIT DOA estimation method is presented for arbitrary array. The method is robust to the channel uncertainty model errors with any two channels characteristics known. The method is verified by the simulation experiments. -
Poral B, Friedlander B. Direction finding algorithms based on high-order statistics. IEEE Trans. on SP, 1991, SP-39(9): 2016-2023.[2]Dogan M C, Mendel J M. Application of cumulants to array processing Part I: Aperture extension and array calibration. IEEE Trans. on SP, 1995, SP-43(5): 1200-1216.[3]Dogan M C, Mendel J M. Application of cumulants七o array processing Part II: Non-Gaussian noise suppression. IEEE Trans. on SP,1995, SP-43(7): 1663-1676.[4]魏平. 高分辨陣列測(cè)向系統(tǒng)研究:[博士論文].成都電子科技大學(xué),1996年.[5]Mendel J M. Tutorial on higher-order statistics (spectra) in signal processing and system theory: Theoretical results and some application[J].Proc.IEEE.1991, 79(3):278-305[6]Haykin S. Advances in Spectrum Analysis and Processing, Vol. II, Englewood Cliffs New Jersey: Prentice-Hall Press, 1991, chapter 5, chapter 6.[7]Roy R, Paulraj A, Kailath T. ESPRIT-estimation of signal parameters via rotations invariance technique. IEEE Tans. on ASSP, 1989, ASSP-34(7): 984-995.[8]Brewer J W. Kronecker products and matrix calculus in system theory. IEEE Trans. on CAS, CAS-25(9): 772-781. -
計(jì)量
- 文章訪問數(shù): 2080
- HTML全文瀏覽量: 152
- PDF下載量: 490
- 被引次數(shù): 0