隨機(jī)分形信號(hào)參數(shù)的分?jǐn)?shù)差分估計(jì)
FRACTIONAL DIFFERENCE ESTIMATION FOR THE PARAMETERS OF RANDOM FRACTAL SIGNAL
-
摘要: 本文首先簡(jiǎn)要介紹隨機(jī)分形信號(hào)的定義、性質(zhì)和時(shí)域表達(dá)式。接著采用差分算子替代微分算子,導(dǎo)出隨機(jī)分形序列的分?jǐn)?shù)差分方程,構(gòu)造和分析了使隨機(jī)分形信號(hào)通過后變?yōu)榘自肼暤姆謹(jǐn)?shù)差分白化濾波器。最后提出基于該濾波器的參數(shù)估計(jì)方法,其實(shí)質(zhì)是通過計(jì)算輸出信號(hào)的統(tǒng)計(jì)測(cè)試表達(dá)式的極值獲得分形參數(shù)。實(shí)驗(yàn)結(jié)果表明該方法有效。Abstract: The definition, property and time-domain expression of random fractal signal are introduced in brief. The fractional difference equation of random fractal series is induced by substituting difference operator for differential operator, and the fractional differenced whiten-ing filter, through which random fractal signal is converted to white noise, is analyzed and constructed. The method for parameters estimation based on fractional differenced whitening filter is proposed, the essentiality of which is to find out a factor by calculating the extremum of the statistic test expression for the output. Experimental results demonstrate its effectiveness.
-
李后強(qiáng),汪富泉.分形理論及其在分子科學(xué)中的應(yīng)用.北京:科學(xué)技術(shù)出版社,1993.157-178.[2]Blackledge J M.On the synthesis and processing of fractal signals and images.Applications of fractals and chaos.New York: Springer-verlag,1993.81-99.[3]Lundahl T,Ohley W T,Kay S M,et al.Fractional Brownian motion: A maximum likelihood estimator and its application to image texture[J].IEEE Trans.on Med.Imaging.1986,5(3):152-161[4]Deriche M,Tewfik A H.Maximum likelihood estimation of the parameters of discrete fractionally differenced Gaussian noise process.IEEE Trans.on SP,1993,SP-41(10): 2977-2989.[5]謝文錄.雷達(dá)信號(hào)處理中的分形模型與方法研究:[博士學(xué)位論文].西安:西安電子科技大學(xué),1997.[6]Deriche M,Tewfik A H.Signal modeling with filtered discrete fractional noise process.IEEE Trans.on SP,1993,SP-41(9): 2839-2849. -
計(jì)量
- 文章訪問數(shù): 2068
- HTML全文瀏覽量: 96
- PDF下載量: 848
- 被引次數(shù): 0