產(chǎn)生全符號網(wǎng)絡(luò)函數(shù)的Coates流圖法
COATES GRAPH APPROACH FOR GENERATING SYMBOLIC NETWORK FUNCTION
-
摘要: 本文引入符號碼數(shù)組、常數(shù)數(shù)組和記數(shù)數(shù)組,前二數(shù)組用來描述增廣矩陣的元素表達(dá)式,建立節(jié)點(diǎn)導(dǎo)納方程,后一數(shù)組用來寫出入度矩陣,然后根據(jù)入度矩陣產(chǎn)生Coates流圖的全部1-因子增益。在展開行列式時(shí)利用符號代碼合并同類項(xiàng),消去相消項(xiàng),從而得到無相消項(xiàng)的全符號網(wǎng)絡(luò)函數(shù)。Abstract: Symbolic code matrix, constant matrix and count matrix are defined. The first two matrixes are used to describe the elemental expressions of augmentation matrix and the node admittance equation is thus obtained. The third matrix is used to obtain the incoming degree matrix, and all the 1-factor gains of the coates graph are given according to the matrix. Using the code data, the determinant is expanded and all the same items in the expansion are merged. Thus the symbolic network function in which no term concellation occurs is generated.
-
P. M. Lin, G. E. Alderson, SNAP-A Computer Program for Generating Symbolic Nework Function, School Elec. Eng., Purdue Univ., Lafaytte, Ind., Rep. TR-EE70-16, Aug. 1970.[2]張惠廉,莊鎮(zhèn)泉,電子線路的計(jì)算機(jī)輔助設(shè)計(jì),人民教育出版社,1979,下冊,244-259.[3]W. K. Chen, Applied Graph Theory, North-Holland, 1976, p. 144.[4]P. R. Adby, Applied Circuit Theory, Matrix and Computer Methods, Ellis Horwod Limited, 1980, Chap.4.[5]陳樹柏,左愷,張良震, 網(wǎng)絡(luò)圖論及其應(yīng)用,科學(xué)出版社,1982,第5章. -
計(jì)量
- 文章訪問數(shù): 2345
- HTML全文瀏覽量: 131
- PDF下載量: 552
- 被引次數(shù): 0