GS正交算法中正交化次數(shù)的自動(dòng)確定
AN AUTOMATIC DETECTION APPROACH FOR GS ORTHOGONALIZATION
-
摘要: Gram-Schmidt(Gs)正交算法在自適應(yīng)抗干擾領(lǐng)域日漸被人們所關(guān)注,特別是作為一種快速自適應(yīng)波束形成算法而倍受重視。但采用這種算法需要首先確定信號(hào)源的個(gè)數(shù),以決定正交化運(yùn)算的次數(shù)。本文正是對(duì)此問(wèn)題進(jìn)行研究,提出一種簡(jiǎn)單的方法并利用一個(gè)判斷閾值來(lái)實(shí)現(xiàn)在GS正交化過(guò)程中自動(dòng)確定正交化運(yùn)算的次數(shù)。
-
關(guān)鍵詞:
- GS正交算法; 自適應(yīng)濾波; 自適應(yīng)波束形成
Abstract: Gram-schmidt algorithm is an interesting theme in the field of adaptive beamformer as a fast algorithm. However, a key problem associated with this algorithm is the detection of orthogonalisation on the basis of prior-knowledge of interferences dimension. In this paper, a simple and fast approach is proposed to detect the orthogonalisation automatically in the procedure of GS orthogonal decomposition. Finally, computer simulations are presented. -
Widrow B. Adaptive filters. in[2]Kalman R E. Declaris N, eds. Aspects of Networks and System Theory. New York: Holt, Rinehard and Winston, 1971.[3]Howells P W. Intermediate Frequency Sidelobe Canceller, US Parent 3,202,990.Aug. 1965.[4][3][5]Applebaum S P. Adaptive Arrays, Syracuse Uni. Res. Corp., Rep. SPL TR66-1, Aug. 1966.[6]Hung E K L, Turner R M. A fast-beamforming algorithm for large arrays, IEEE Trans. on AES, 1983, AES-19(4):598-606.[7]葛利嘉.SVD及其空間譜估計(jì)算法的高速數(shù)學(xué)信號(hào)處理器實(shí)現(xiàn):[碩士論文].電子科技大學(xué),1991.3. -
計(jì)量
- 文章訪問(wèn)數(shù): 2001
- HTML全文瀏覽量: 129
- PDF下載量: 369
- 被引次數(shù): 0