高維大碼距Hamilton陣列編碼理論與綜合算法
The theory of hamilton array codes for high dimension and big hamming distance and the synthesis algorithm
-
摘要: 該文定義了高維大碼距Hamilton陣列編碼理論的基本概念,分析了d=2k-1(k3)類型和d=2k(k3)類型陣列編碼的Hamilton邏輯拓?fù)浣Y(jié)構(gòu)模型和一般Hamilton陣列編碼的存在拓?fù)錀l件,并給出d=2k-1(k3)與d=2k(k3)高階高維Hamilton陣列編碼的構(gòu)造原理和綜合算法。文中還討論了兩類模型的區(qū)別,以及實例設(shè)計,這為新型陣列密碼研究提供一個新方向。Abstract: In this paper, the theory of Hamilton array codes for high dimension and big Hamming distance is proposed. The model of logical topology structure for d- 2k-l,d=2k(k 3) types and the existence topology condition for general high order SM array codes are analyzed. The construction principle and the synthesis algorithm of SM array codes for d=2k- 1 and d=2k(k 3) high dimension and high order are discussed. Finally, the distinction between the two models and the example design are given. The result provides a new direction for a class of new type array ciphers research.
-
林柏鋼,基于D=2的SM陣列碼構(gòu)造,密碼學(xué)進(jìn)展-CHINACRYPT94,第三屆中國密碼學(xué)學(xué)術(shù)會議論文集,北京,科學(xué)出版社,155-160.[2]林柏鋼,Sbos相鄰邏輯對稱序列構(gòu)造與實現(xiàn)方法,電子科學(xué)學(xué)刊,1991,13(5),502-508.[3]林柏鋼,邱宏端,高維D=3 SM陣列編碼構(gòu)造與實現(xiàn),電子科學(xué)學(xué)刊,2000,22(2),198-204.[4]林柏鋼,邱宏端,用圖論方法實現(xiàn)D=4 SM陣列編碼,電路與系統(tǒng)學(xué)報,1999,4(4),62-67. [5]Lin Bogang, The process of integrated learning and the model of parallel search for solution tactics, International Conference Proceeding of ICNNSP95, P.R.China, Dec., 1995, 60-63.[5]C.J.A. Jansen, W. G. Franx, D. E. Boekee, An efficient algorithm for the generation of De-Bruijn cycles, IEEE Trans. on Inform. Theory, 1991, IT-37(5), 1475-1478. -
計量
- 文章訪問數(shù): 2200
- HTML全文瀏覽量: 78
- PDF下載量: 535
- 被引次數(shù): 0