一種基于小波變換的自適應(yīng)濾波新方案
A NEW WAVELET TRANSFORM BASED SCHEME FOR ADAPTIVE FILTERING
-
摘要: 本文基于L2(R)函數(shù)的尺度函數(shù)表示法提出一種適用于聲回波對(duì)消應(yīng)用的自適應(yīng)系統(tǒng)辯識(shí)的新方案。該方案可以利用小波變換的抽取特性,降低自適應(yīng)迭代的次數(shù)且保持小波準(zhǔn)正交變換的優(yōu)點(diǎn)。計(jì)算機(jī)模擬證實(shí)了上述論斷的正確性。
-
關(guān)鍵詞:
- 小波變換; 自適應(yīng)信號(hào)處理; 聲回波對(duì)消
Abstract: Based on the scale function representation for a function in L2(R), a new wavelet transform based adaptive system identification scheme used for acoustic echo cancellation is proposed. It can reduce the amount of computation by exploiting the decimation and keep the advantage of quasi-othogonal transform with the discrete wavelet transform(DWT). The issue has been supported by computer simulations. -
Doroslovacki M, et al. Wavelet-based adaptive filtering. Proceedings of International Conference[2]on Acoustic, Speech and Signal Processing. Vo1.3, Minneapolis, MN, USA: 1993, 488-491.[3]Doroslovacki M, et al. Wavelet-based linear system modeling and adaptive filtering. IEEE Trans. on SP, 1996, SP-44(5): 1156-1167.[4]Vetterli M, et al. Wavelet and filter banks: Theory and design. IEEE Trans. on SP, 1992, SP-40(9): 2207-2232.[5]Jin Q, et al. Optimal filter banks for signal decomposition and its applications in adaptive echo cancellation, IEEE Trans. on SP, 1996, SP-44(7): 1669-1680.[6]Shynk J J. Frequency-domain and multirate adaptive filtering. IEEE Signal Processing Magazine,[7]92, 9(1): 14-37.[8]Erdol N, et al. Wavelet transform based adaptive filters: Analysis and new results[J].IEEE Trans. on AS.1996, 44(9):2163-2171[9]Tewfik A H, et al. On the optimal choice of a wavelet for signal representation. IEEE Trans. IT. 1992, 38(2): 747-765.[10][美] N.S.杰因特,[德] 彼得.諾爾著,錢亞生,諸厭鱗譯.語音與圖像的波形編碼原理及應(yīng)用.北京:人民郵電出版社,第二章,1990年. -
計(jì)量
- 文章訪問數(shù): 2086
- HTML全文瀏覽量: 172
- PDF下載量: 667
- 被引次數(shù): 0