圓形波導(dǎo)有源區(qū)域DGF的特性研究(Ⅱ)
A CRITICAL STUDY ON DGF AT THE SOURCE REGION IN CIRCULAR WAVEGUIDES (Ⅱ)
-
摘要: 本文是研究圓形波導(dǎo)有源區(qū)域并矢格林函數(shù)(DGF)的計算及其普遍性質(zhì)的第Ⅱ部分。文中首先導(dǎo)出圓形波導(dǎo)中麥克斯韋方程的邊界條件的并矢形式,并證明了圓形波導(dǎo)中橫向電流源本征函數(shù)展開的完備性定理,然后驗證作者1984年在另一文中解得的圓形波導(dǎo)有源區(qū)域DGF是否滿足有源并矢麥克斯韋方程和電流連續(xù)性原理。文未給出了圓形波導(dǎo)有源區(qū)域電磁場的計算公式。
-
關(guān)鍵詞:
Abstract: This is the second part of our work on DGF at the source region in circular waveguides. With the application of the main results of the first part, a systematic investigation on the general properties of DGF at the source region is given. The dyadic version of the boundary conditions for Maxwall s equations is derived and the completeness of the expanision of the transverse current in circular waveguides in terms of the vector M and N is proved. It is shown that the electric and magnetic DGF satisfy the satisfy the basic dyadic equations. -
潘生根,電子科學(xué)學(xué)刊,8(1986).[2]A. D. Yaghjian, Proc. IEEE, 68(1980), 248.[3]C. T. Tai, ibid., 69(1981), 282.[4]C. T. Tai, ibid., 61(1973), 480.[5]C. T. Tai, Math. Note 28, Weapons Systems Laboratory, Kirtland, AFB, Alb. NM, July 1973.[6]M. Kisliuk, Int.J.Electonics, 54(1983), 349.[7]M. Kisliuk, IEEE Trans. on MTT, MTT-28(1980), 894.[8]林為干,微波理論和技術(shù),科學(xué)出版社,1979,第303頁.[9]Pan Shenggen, Int.J.Electronics, 58(1985), 179. -
計量
- 文章訪問數(shù): 1673
- HTML全文瀏覽量: 123
- PDF下載量: 379
- 被引次數(shù): 0