自相似網(wǎng)絡(luò)流量Hurst指數(shù)的迭代估計(jì)算法
An Iterative Method to Estimate Hurst Index of Self-similar Network Traffic
-
摘要: 該文提出了一種快速估計(jì)Hurst指數(shù)的迭代算法,并將它應(yīng)用于分形高斯噪聲和真實(shí)網(wǎng)絡(luò)流量數(shù)據(jù)。實(shí)驗(yàn)結(jié)果表明,與傳統(tǒng)方法相比,該算法有著較快的速度和較小的置信區(qū)間,并且不易受時(shí)間尺度變化影響,可作為一種在線估計(jì)Hurst指數(shù)的方法。
-
關(guān)鍵詞:
- 自相似; Hurst指數(shù); 迭代; 小波
Abstract: In this paper, an iterative method is presented to estimate Hurst index, and it is applied to both FGN (Fractional Gaussian Noise) data and real traffic data. Experimental results demonstrate that this method is much faster and has smaller confidence interval compared with traditional method. Moreover, the method is stable on different scales, so it can be used as an on-line Hurst index estimator. -
計(jì)量
- 文章訪問(wèn)數(shù): 2703
- HTML全文瀏覽量: 114
- PDF下載量: 1802
- 被引次數(shù): 0