多值邏輯函數(shù)與其變?cè)膸追N無(wú)關(guān)性的譜分析
SPECTRAL ANALYSIS OF SOME INDEPENDENCES OF MULTIPLE-VALUED LOGICAL FUNCTIONS FROM THEIR VARIABLES
-
摘要: 多值邏輯函數(shù)與它們的變?cè)g有許多種特殊關(guān)系,單從它們的表達(dá)式是較難判斷的。本文給出了多值邏輯函數(shù)與其變?cè)獰o(wú)關(guān)和統(tǒng)計(jì)無(wú)關(guān)的一些充分必要條件;給出了多值邏輯函數(shù)與其某些變?cè)鷶?shù)無(wú)關(guān)(也稱(chēng)為退化)的一些條件和最大程度地退化一個(gè)函數(shù)的方法;指出了這些結(jié)果在實(shí)際中的應(yīng)用。所有這些結(jié)果都是Chrestenson譜方法來(lái)研究的。Abstract: There are many kinds of special relationships between multiple-valued logical functions and their variables, and it is difficult to be judged from their expressions . In this paper, some sufficient and necessary conditions of the independence and statistical indepenndence of multiple-valued logical functions from their variables are given. Some conditions of algebraic independence of multi-valued logical functions from some of their variables and the way to degenerate a function to the greatest extent are proposed, and some applications of these results are indicated. All the results are studied by using Chrestenson spectral techniques.
-
M. G. Karpovsky.[J].Finite Orthogonal Series in the Design of Digital Devices, John WileySons, New York.1976,:-[2]肖國(guó)鎮(zhèn),關(guān)于n元Boole函數(shù)與某一變?cè)獰o(wú)關(guān)的判別準(zhǔn)則,中國(guó)電子學(xué)會(huì)文集,信息論與沃爾什函數(shù),中國(guó)電子學(xué)會(huì)信息論專(zhuān)業(yè)學(xué)會(huì)編,廣州,(1980),第295-297頁(yè).[3]武傳坤,布爾函數(shù)對(duì)某些變?cè)臒o(wú)關(guān)性,西安電子科技大學(xué)學(xué)報(bào),15(1988)4,74-81.[4]G. Z. Xiao, J. L. Massey, IEEE Trans. on IT, IT-34(1988)3, 569-571.[5]G. Z. Xiao, B. Z. Shen, C. K. Wu, Some Spectral Techniques in Coding Theory, Presented at Second International Workshop on Spectral Techniques, Montreal, Canada, 1986, also Discrete Mathematics 87(1991); 181-186.[6]陳克非,糾錯(cuò)碼特征函數(shù)的譜分析,電子學(xué)報(bào),16(1988) 5,87-92.[7]T. Siegenthaler, IEEE Trans. on C,C-34(1985)1, 81-85.[8]T. Siegenthaler, Cryptanalysis Representation of Nonlinearly Filtered ML-sequences, Lecture Notes in Computer Science, Advances in Cryptology-EUROCRYPT85, Springer-Verlag, Berlin, Heidelberg (1986), pp. 103-110.[9]A. Ben-Israel.[J].T. N. E. Greville, Generalized Inverses; Theory and Applications, John Wiley Sons, New York.1974,:- -
計(jì)量
- 文章訪問(wèn)數(shù): 2267
- HTML全文瀏覽量: 132
- PDF下載量: 455
- 被引次數(shù): 0