不含短環(huán)的(n,3,k)LDPC碼的幾何構(gòu)造方法
Geometry Construction of (n,3,k) LDPC Codes without Short Cycles
-
摘要: 該文基于不含短環(huán)的(n,2, k)規(guī)則低密度奇偶校驗(LDPC)碼,提出了一種最短環(huán)長為8的(n,3, k)規(guī)則LDPC碼的幾何構(gòu)造方法,該方法簡單直觀而有效。仿真結(jié)果顯示,在AWGN信道中其具有明顯優(yōu)于隨機構(gòu)造的規(guī)則LDPC碼的性能。
-
關(guān)鍵詞:
- LDPC碼; 容許斜度對; 環(huán); 和-積譯碼
Abstract: In this paper, based on (n,2,k) regular Low Density Parity-Check (LDPC) codes without short cycles, a geometry method for the construction of(n,3,k) regular LDPC codes with 8-girth is proposed,which is simple,intuitionistic and effective. Simulation results show that these codes achieve obviously better performance than randomly constructed regular LDPC codes over AWGN channals. -
Gallager R G. Low-density parity check codes. IRE Trans. on Information Theory, 1962, IT- 8(3): 208.220.[2]李水平,劉玉君,邢慶軍,李智勇. LDPC碼的環(huán)分析. 信息工程大學(xué)學(xué)報, 2003, 4(4): 82.84.[3]劉斌,童勝,白寶明. 不含小環(huán)的低密度校驗碼的代數(shù)構(gòu)造方法[J].電子與信息學(xué)報.2004, 26(11):1778-瀏覽[4]Haotian Zhang, Moura Jose M F. The design of structured regular LDPC codes with large girth. IEEE Trans. on Globecom, 2003: 4022.4027.[5]Zhang Tong, Parhi Parhi Keshab. Joint code and decoder design for implementation oriented (3,k) regular LDPC codes. Department of Electrical and Computer Engineering University of Minnesona, IEEE Trans. on Com., 2001: 1232 .1236.[6]Hu Xiao-Yu. Eleftheriou Evangelos, Arnold Dieter Michael, Dholakia Ajay. Efficient implementations of the sum-product algorithm for decoding LDPC codes [A]. GLOBECOM[C]. San Antonio. IEEE, 2001: 1036.1036. -
計量
- 文章訪問數(shù): 2184
- HTML全文瀏覽量: 92
- PDF下載量: 830
- 被引次數(shù): 0