廣義多極子技術(shù)在含有尖銳棱邊的二維理想導(dǎo)電柱散射問題中的應(yīng)用
THE GENERALIZED MULTIPOLE TECHNIQUE FOR PERFECTLY CONDUCTING CYLINDERS WITH SHARP EDGES
-
摘要: 本文探討了廣義多極子技術(shù)(GMT)不能處理理想導(dǎo)體尖銳棱邊散射問題的根源,并引入有限差分技術(shù),使之與GMT結(jié)合形成了可有效處理這類散射問題的混合分析技術(shù),文中算例證明了所得方法的可靠性和有效性。
-
關(guān)鍵詞:
- 電磁散射; 廣義多極子技術(shù); 有限差分; 理想導(dǎo)體; 尖銳棱邊
Abstract: The principle of the generalized multipole technique (GMT) is studied, and the cause is discovered that the technique can not be applied to perfectly conducting scatterers with sharp edges. Then a new method, combining GMT with finite difference technique, is proposed. Using the new method, the scatterings from sharp edges can be analyzed effectively. -
Hafiner C. Generalized Multipole Technique for Computational Electromagnetics, Artch. Boston London: 1990, Chapter 7.[2]Leviatan Y, et al. IEEE Trans. on AP, 1988, AP-36(12): 1722-1734.[3]Ludwig A C. IEEE Trans. on AP, 1986, AP-34(7): 857-865.[4]Joo K, Iskander M F. IEEE Trans. on AP, 1990, AP-39(9): 1483-1989.[5]Ludwig A C. A New Technique for Numerical Electrometics, IEEE Antennas and Propagat. Society Newsletter, 1989, 4: 40-41. -