短序列條件下基于分段多項式建模方法的相位估計性能分析
Phase Estimation Accuracy Based on Piecewise Polynomial-Phase Modeling Method with Short Sequences
-
摘要: 該文主要對短序列非多項式相位條件下基于高階模糊函數(shù)(HAF)的多項式相位系數(shù)估計算法性能進行了較詳細的討論。進一步研究了基于這種算法思想的分段多項式相位建模的瞬時相位估計方法。該方法的思想主要體現(xiàn)為將需估計數(shù)據(jù)序列進行分段,每個短數(shù)據(jù)段的瞬時相位采用一個低階的多項式來逼近,而這些逼近多項式的各階系數(shù)利用HAF或乘積高階模糊函數(shù)(PHAF)的方法進行估計,最終整個數(shù)據(jù)序列的相位由各段估計出的瞬時相位合并而成。該方法的估計性能很大程度上取決于各分段數(shù)據(jù)序列的估計精度。文中分析了短序列非多項式相位對HAF及PHAF的影響,并通過仿真實驗給出了具有一般性的結(jié)論。
-
關(guān)鍵詞:
- 瞬時相位估計; 多項式相位信號; 分段建模; 短序列; 乘積高階模糊函數(shù)
Abstract: In this paper, the performance of polynomial phase coefficient estimation algorithm based on High-order iguity Function (HAF) for non-polynomial phase signal with short sequences is discussed in detail. Further, ntaneous phase estimation method is developed on the basis of the idea of this algorithm. The main idea of the ;ssed algorithm is to divide the data sequence into several segments, approach the instantaneous phase of each short Lent by a low-order polynomial, estimate the parameters of the modeling polynomial-phase signal by HAF and Product methods, and finally integrate the whole phase with estimated instantaneous phase of each segment. The estimation mnance depends comparatively on the achievable accuracy of the segmented phase. The disadvantage of /PHAF-based polynomial-phase estimation method with short and non-polynomial phase sequences is analyzed in this r and some general conclusions are drawn after simulations. -
Boashash B. Estimating and interpreting the instantaneous frequency of a signal-Part 1: Fundamentals[J].Proc. IEEE.1992,80(4):520-[2]Boashash B. Estimating and interpreting the instantaneous frequency of a signal-Part 2: Algorithms and applications[J].Proc.IEEE.1992, 80(4):540-[3]Peleg S, Porat B. Estimation and classification of polynomial-phase signals[J].IEEE Trans. on Info. Theory.1991,37(2):422-[4]Peleg S, Porat B. The Cramer-Rao lower bound for signals with constant amplitude and polynomial phase[J].IEEE Trans. on Signal Proc.1991, 39(3):749-[5]Peleg S, Friedlander B. The discrete polynomial-phase transform[J].IEEE Trans. on Signal Proc.1995, 43(8):1901-[6]Barbarossa S, Scaglione A, Giannakis G B. Product high-order ambiguity function for multicomponent polynomial-phase signal modeling[J].IEEE Trans. on Signal Proc.1998, 46(3):691-[7]Peleg S, Porat B, Friedlander B. The achievable accuracy in estimating the instantaneous phase and frequency of a constant amplitude signal[J].IEEE Trans. on Signal Proc.1995, 41(6):2216-[8]Barbarossa S, Scaglione A. Autofocusing of SAR images based on the product high-order ambiguityfunction[J].. IEE Proc.-Radar,Sonar andNavig.1998, 145(5):269-[9]Barbarossa S.[J].Scaglione A. Demodulation of CPM signals using piecewise polynomial-phase modeling[C]. Proc. of ICASSP 98,Seattle, WA, USA: [s.n..1998,:-[10]Lu Kun.[J].Wang Jiong, Liu Xingzhao. A piecewise parametric method based on polynomial phase model to compensate ionospheric phase contamination[C]. Proc. of ICASSP 03,HongKong, China: [s.n..2003,:- -
計量
- 文章訪問數(shù): 2288
- HTML全文瀏覽量: 113
- PDF下載量: 655
- 被引次數(shù): 0