基于小波包變換的非高斯噪聲信號(hào)結(jié)構(gòu)分析
The Signal Structure Analysis of Non-Gaussian Noise Based on Wavelet Packet Transform
-
摘要: 該文利用小波包變換的時(shí)頻局部分析能力,研究了非高斯分布平穩(wěn)隨機(jī)噪聲的統(tǒng)計(jì)特性,揭示了 非高斯噪聲信號(hào)的信號(hào)結(jié)構(gòu)。在此基礎(chǔ)上,將經(jīng)典最優(yōu)檢測(cè)器的結(jié)論推廣到背景噪聲為非高斯分布的情況, 提出了一種基于小波包變換的非高斯噪聲下的信號(hào)檢測(cè)方法。仿真實(shí)驗(yàn)驗(yàn)證了該方法是正確的。Abstract: By exploiting wavelet packet transform to analyze signals both in time and frequency space, this paper researches the statistic property of non-Gaussian stationary noise and its signal structure. The results of classic optimum detector arc extended to the condition where the distribution of background noise is non-Gaussian and a new signal detection algorithm in non-Gaussian background noise is given. The simulated result justifies this method.
-
Martin R D, Schwartz S C. Robust detection of a known signal in nearly Gaussian noise. IEEE Trans. on IT, 1971, IT-17(1): 50-56.[2]劉有恒.信號(hào)檢測(cè)與估計(jì).北京:人民郵電出版社,1989:57-70,507-511.[3]Hinich J, Wilson G R. Detection of non-Gaussian signals in non-Gaussian noise using the bispectrum. IEEE Trans. on IT, 1990, IT-38(7): 1126-1131.[4]秦前清,楊宗凱.實(shí)用小波分析.西安:西安電子科技大學(xué)出版社,1994:54-64,87.[5]楊福生.小波變換的工程分析與應(yīng)用.北京:科學(xué)出版社,1999:1-40,178-181.[6]朱華,黃輝寧,李永慶,梅文博.隨機(jī)信號(hào)分析.北京:北京理工大學(xué)出版社,1990:282-286. [7]孫山澤.非參數(shù)統(tǒng)計(jì)講義.北京:北京大學(xué)出版社,2000:106-108.[7]崔景泰著,程正興譯.小波分析導(dǎo)論.西安:西安交通大學(xué)出版社,1995:333-335.[8]A.帕普里斯著,保錚等譯.概率隨機(jī)變量與隨機(jī)過程.西安:西北電訊工程學(xué)院出版社,1984:212-244.[9]張賢達(dá).時(shí)間序列分析-高階統(tǒng)計(jì)量方法.北京:清華大學(xué)出版社,1996:25-46. -
計(jì)量
- 文章訪問數(shù): 2325
- HTML全文瀏覽量: 92
- PDF下載量: 1066
- 被引次數(shù): 0