二值圖象平滑算法和細(xì)胞神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)
SMOOTHING ALGORITHMS FOR BINARY IMAGE USING CELLULAR NEURAL NETWORKS
-
摘要: 本文利用細(xì)胞神經(jīng)網(wǎng)絡(luò)(CNN)的基本處理單元一細(xì)胞的分段線性飽和輸出特性和相平面分析法實(shí)現(xiàn)了線性可分和線性不可分布爾函數(shù)。并利用這一原則實(shí)現(xiàn)了二值圖象的多種CNN平滑算法。Abstract: The piecewise linear saturation characteristics of cell in a cellular neural network(CNN) and phase plane analysis method are used to realize linear separable and nonseparable Boolean expressions. And the principle is also used to achieve some CNN smoothing algorithms for binary images.
-
Chua L O, Yang L. IEEE Trans. on CAS, 1988, CAS-35(10): 1257-1272.[2]Chua L O, Yang L. IEEE Trans. on CAS, 1988, CAS-35(10): 1273-1290.[3]Proceedings of the First IEEE International Workshop on Cellular Neural Networks and Their Ap-plications. Budapest: 1990.[4]Proceeding of the Second IEEE International Workshop on Cellular Neural Networks and Their Applications. Munich: 1992.[5]Special Issue on Cellular Neural Networks. Int. J Circuit Theory and Appl., 1992, 20(8).[6]Special Issue on Cellular Neural Networks: Theory. IEEE Trans. on CAS, 1993, CAS-I, 40(3).[7]Special Issue on Cellular Neural networks: Applications. IEEE Trans. on CAS, 1993, CAS-II, 40(3).[8][8][9]Fu K S, et al. Robotics: Control, Sensing, Vision and Intelligence. New York, North-Holland: 1985.[10]Yager R R, Zadeh L A. An Introduction to Fuzzy Logic Applications in Intelligent Systems, Boston: Kluwer Academic Publishers, 1992, 1-25. -
計(jì)量
- 文章訪問數(shù): 2090
- HTML全文瀏覽量: 110
- PDF下載量: 439
- 被引次數(shù): 0