高分辨率信號DOA估計的跟蹤算法
TRACKING ALGORITHM FOR HIGH-RESOLUTION DOA ESTIMATION
-
摘要: 本文論述了一種基于子空間方法的高分辨DOA估計跟蹤問題的解法。該方法基于對采樣數(shù)據(jù)矩陣的廣義奇異值分解(GSVD)。本文討論了GSVD的更新修正算法,在每步計算中只需有限次的運算,即可由前一次的近似分解結果計算出新的近似分解。該過程與指數(shù)加權技術相結合,可以處理信號參數(shù)估計的跟蹤問題。Abstract: A subspace-based tracking algorithm is proposed for high-resolution DOA estimation, using the generalized singular value decomposition (GSVD) of the sample data matrices. A GSVD updating procedure is presented. With this procedure, a new approximate decomposition can be computed from previous one, with finite operations at each iteration. Combined with exponetial weighting technique, this algorithm can solve DOA estimation tracking problems efficiently.
-
Roy R,Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques.[2]IEEE Trans. on ASSP, 1989, ASSP-37(7): 984-995.[3]Moonen M, Van Dooren P, Vandewalle J. Updating singular value decomposition: A parallel im-[4]plementation, SPIE 1152, Advanced algorithms and architectures for signal processing IV, 1989, 80-91.[5]Moonen M, Van Dooren P, Vandewalle J. A singular value decomposition algorithm for subspace tracking, SIAM J[J].Matrix and Anal. Appl.1992, 13(4):1015-1038[6]Moonen M, Van Dooren P, Vandewalle J. A systolic array for SVD updating, SIAM J[J].Matrix Anal. Appl.1993, 14(2):353-374[7]Paige C C, Saunders M A. Towards a generalized singular value decomposition, SIAM J[J].Numer. Anal.1981, 18(2):398-405[8]Paige C C. Computing the generalized singular value decomposition, SIAM J[J].Sci. Stat. Comput.1986, 7(4):1126-1146[9]Golub G H, Van Loan C F. Matrix Computations, Baltimore MD: The Johns Hopkina University Press, 1983, Chapter 12. -
計量
- 文章訪問數(shù): 2017
- HTML全文瀏覽量: 158
- PDF下載量: 391
- 被引次數(shù): 0