用線性函數(shù)空間理論求解標(biāo)量波動(dòng)方程和泊松方程的反演問題
INVERSE TRANSFORM OF THE SCALAR WAVE EQUATION AND POISSION S EQUATION BY THE CONCEPTS OF LINEAR SPACE
-
摘要: 基于線性函數(shù)空間理論的矩量法不僅適用于電磁場(chǎng)問題的數(shù)值計(jì)算,而且適用于解析法求解電磁場(chǎng)間題。本文分析了用本征函數(shù)作試函數(shù)和展開函數(shù)時(shí)的標(biāo)量波動(dòng)方程和泊松方程的反演形式,得到了一個(gè)很簡(jiǎn)單的對(duì)于各種邊界條件普遍適用的公式。這一公式不僅適用于求解標(biāo)量波動(dòng)方程和泊松方程,而且只要稍加修改還可適用于解矢量波動(dòng)方程問題,即求普遍形式的電磁場(chǎng)的激勵(lì)問題。
-
關(guān)鍵詞:
Abstract: The moment method based on the concepts of linear spaee can be applied not only to numerieal computation of the Electromagnetic field, but also to the analytic solution. By taking the eigenfunetions as basis functions and test funetions, a very simple, but generalized formula of the solution for the scalar wave equations and Poission s equations can be got. This formula not only can be applied to the scalar wave equations; but also can be applied to vector wave equations by some modifications. -
C. T. Tai, Dyadic Greens Function in Electromagnetic Theory, Intext Educational publishers, Scranton, Pa. 1971.[2]R. E. Collin, Can. J. Physics, 51(1973), 1135.[3]C. T. Tai, Proc. IEEE, 61(1973), 480.[4]R. F. Harrington, Field Computation by Moment Methods, The Macmillan Company, New York, 1968. -
計(jì)量
- 文章訪問數(shù): 2347
- HTML全文瀏覽量: 134
- PDF下載量: 494
- 被引次數(shù): 0