可能性劃分系數(shù)和模糊變差相結(jié)合的聚類有效性函數(shù)
Clustering validity function based on possibilistic partition coefficient combined with fuzzy variation
-
摘要: 基于可能性分布描述因子定義的可能性劃分系數(shù)有隨類數(shù)增加而單調(diào)遞減的趨勢(shì),缺乏與數(shù)據(jù)集幾何結(jié)構(gòu)的直接聯(lián)系。該文考慮到數(shù)據(jù)集的幾何結(jié)構(gòu)信息,對(duì)可能性劃分系數(shù)進(jìn)行改進(jìn),提出了新的聚類有效性標(biāo)準(zhǔn)。實(shí)驗(yàn)結(jié)果表明,該文提出的方法具有良好的分類性能。
-
關(guān)鍵詞:
- 模糊劃分; 模糊C-均值聚類; 聚類有效性; 可能性劃分系數(shù)
Abstract: Possibilistic partition coefficient which based on possibilistic distribution descriptor has decreasing tendency as the classification number increasing and does not directly relate to the geometry structure of data set. To consider the geometry structure information of data set, new clustering validity functions are defined by modify possibilistic partition coefficient. Experimental results show that the new methods have good classification performance. -
J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, New York, Plenums Press, 1981, 95-107.[2]N.R. Pal, J. C. Bezdek, On cluster validity for the fuzzy C-means model, IEEE Trans. on Fuzzy Systems, 1995, 3(3), 370-379.[3]范九倫,裴繼紅,謝維信,基于可能性分布的有效性函數(shù),電子學(xué)報(bào),1998,26(4),103-105.[4]L.A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems, 1978, 1(1),3-28.[5]L.O. Hall, A. Kandel, Studies in possibilistic recognition, Fuzzy Sets and Systems, 1985, 17(2),167-179.[6]范九倫,模糊聚類新算法與聚類有效性問(wèn)題研究,[博士論文],西安電子科技大學(xué),1998年. [7]X.L. Xie, G. A. Beni, Validity measure for fuzzy clustering, IEEE Trans. on Pattern Anal.Machine Intell, 1991, 3(8), 841-846.[7]M.S. Yang, On a class of fuzzy classification maximum likelihood procedures, Fuzzy Sets and Systems, 1993, 57(3), 365-375. -
計(jì)量
- 文章訪問(wèn)數(shù): 2667
- HTML全文瀏覽量: 142
- PDF下載量: 517
- 被引次數(shù): 0