异步 DS-CDMA 系统中相对时延对多用户检测的 性能影响:分析与评估

王 伶 焦李成 陶海红* 刘 芳**
 (西安电子科技大学智能信息处理研究所 西安 710071)
 *(西安电子科技大学雷达信号处理国家重点实验室 西安 710071)
 **(西安电子科技大学计算机学院 西安 710071)

摘 要:多用户检测技术是 DS-CDMA 系统中的关键技术之一。在反向链路的基站接收机一端,接收信号是各用 户异步发射信号经传输信道后的叠加,许多多用户检测器的输入是对系统中各用户用特征波形匹配滤波后以符号速 率采样的信号。然而,异步用户间不同的相对时延将引起不等的部分互相关系数,从而也导致不一样的多用户检测 性能。该文分析了平均部分互相关系数的解析表达式并给出了计算方法,采用进化算法求解最大以及最小部分互相 关系数存在的相对时延条件,提出了异步系统中多用户检测在平均、最大以及最小部分互相关系数条件下的性能分 析与评估方法,对分析和比较多用户检测接收机整体性能具有很大意义。

关键词: DS-CDMA,进化算法,异步系统,多用户检测,多址干扰,"远近"效应 中图分类号: TN911.23, TN914.5 文献标识码: A 文章编号: 1009-5896(2005)10-1605-08

Effect of Relative Delay on Performance of Multiuser Detection in Asynchronous DS-CDMA Systems: Analysis and Evaluation

Wang Ling Jiao Li-cheng Tao Hai-hong* Liu Fang**

(Institute of Intelligent Information Processing, Xidian University, Xi'an 710071, China)

* (National Key Lab. for Radar Signal Processing, Xidian University, Xi'an 710071, China)

**(School of Computer Science and Technology, Xidian University, Xi'an 710071, China)

Abstract Multiuser detection is a key technique in DS – CDMA systems. The received signal of uplink receiver is superposition of the spreading signal transmitted by users over asynchronous channels. Many multiuser detectors deal with discrete signal sampled at symbol or chip rate after passing through matched filterers. However, different relative delay between users results in distinct partial correlation coefficients thus bringing about distinct performance of multiuser detectors. It is very important to effectively evaluate the average and extreme performance of system. In this paper, the expression of average partial correlation coefficients is analyzed and the corresponding numerical computation method is proposed. On the other hand, relative delay corresponding to the maximal and minimal correlation coefficients is also solved by the evolution algorithm. Based on the obtained results, the performance of the decorrelating and Minimum Mean Square Error (MMSE) multiuser detectors in asynchronous DS-CDMA systems are evaluated by numerical simulation. **Key words** DS-CDMA, Evolution algorithm, Asynchronous system, Multiuser detection, Multiple access interference, "Near-far" effect

1 引言

直接序列码分多址(**DS-CDMA**)是第三代移动通信系统 中广受欢迎的一种多址技术^[1],与多载波技术的结合也是未 来后三代或第四代移动通信系统的有力竞争者^[1-3]。它支持 高容量和高数据速率业务,能够满足未来移动通信高容量、 廉价、高效率的需求。然而,DS-CDMA 系统在个人通信、 室内通信、当前以及未来移动通信的应用中存在两个主要问 题:多址干扰以及"远近"效应问题^[4]。为了有效地抑制多 址干扰,提高DS-CDMA系统的业务质量、容量以及覆盖率,

2004-05-08 收到, 2005-01-18 改回

国家自然科学基金(60073053)和"十·五"计划资助课题

多用户检测技术是一种强有力的方法[4-13]。

嵌入先进信号处理技术的多用户检测已被认为是 CDMA系统中的关键技术之一^[4],各国学者已提出了许多典 型的多用户检测器^[5-13],均有良好的多址干扰抑制以及抗"远 近"效应能力。其中,许多多用户检测器的输入信号是用系 统中各用户特征波形匹配滤波后以符号速率采样的数据 ^[5-11]。然而,在上行链路的异步系统中,各个用户的部分互 相关函数取决于用户间的相对时延,因此,异步用户间不同 的相对时延将引起不等的多址干扰(MAI),从而也导致不一 样的多用户检测性能;另一方面,实际移动通信系统中用户 的随机接入导致相对时延也是随机变化的,因此,合理有效 地评价异步系统在平均、最大以及最小部分互相关系数条件 下的性能将是非常有意义而艰巨的任务,尤其是系统容量较 大且各用户扩频增益也很大时更是如此。

本文分析了平均部分互相关系数的解析表达式并给出 了计算方法,采用进化算法求解最大以及最小部分互相关系 数存在的相对时延条件,提出了异步系统中多用户检测在平 均、最大以及最小部分互相关系数条件下的性能分析和评估 方法。该方法对于输入信号是匹配滤波输出的多用户检测接 收机是非常有用的,文中将该方法用于MMSE多用户检测器 ^[7,13]、去偏解相关检测器以及缓解边缘影响MMSE多用户检 测器^[6,14]的误码率性能评估。

2 异步传输信号模型及问题描述

假设小区中有 K 个同频干扰用户,采用 BPSK 调制方式,则异步信道下接收的基带信号为

$$r(t) = \sum_{i=-\infty}^{+\infty} \sum_{k=1}^{K} \sqrt{w_k} b_k(i) s_k(t - iT - \tau_k) + n(t)$$
(1)

式中 $s_k(t)$, $\sqrt{w_k}$, $b_k(i)$, T 以及 τ_k 分别表示用户 k 的归一化 特征波形、信号幅度、第 i 个信息码、数据比特持续时间和 信道传输时延; n(t) 是零均值加性高斯白噪声, 双边功率谱 密度为 $N_0/2 = \sigma^2$ 。设 { $b_k(i)$ } 是独立等概率的±1 随机变量, 特征波形 $s_k(t)$ 仅在区间[0,T]内取值且具有单位能量,形式如 下

$$s_k(t) = \sum_{n=0}^{N-1} \beta_n^k \psi(t - nT_c) , \ t \in [0,T]$$
(2)

式中 $(\beta_0^k, \beta_1^k, \dots, \beta_{N-1}^k)$ 是用户k的 ±1 特征序列; $\psi(t)$ 是归一 化码片波形,仅在区间 $[0, T_c]$ 内取值; T_c 以及N分别表示码片 周期和扩频增益,满足 $T=NT_c$ 。设用户相对时延满足 $0 \le \tau_1 \le \tau_2 \le \dots \le \tau_K \le T$ 。对用户k,经匹配滤波器后,在 $t = (i+1)T + \tau_k$ $(i = 0, 1, \dots)$ 时采样,由于是异步情况,接收 信号 $y_k(i)$ 中含有其它用户(i-1)或(i+1)时刻的信息,所以

$$y_{k}(i) = \int_{iT+\tau_{k}}^{(i+1)T+\tau_{k}} r(t)s_{k}(t-iT-\tau_{k})dt$$

$$= \sum_{m=k+1}^{K} \sqrt{w_{m}}b_{m}(i-1)\rho_{k,m}(1) + \sum_{m=1}^{K} \sqrt{w_{m}}b_{m}(i)\rho_{k,m}(0)$$
(3a)

$$+\sum_{m=1}^{k-1} \sqrt{w_m} b_m(i+1) \rho_{k,m}(-1) + n_k(i)$$
(3b)

式中 $\rho_{k,m}(q)$ (q = 0,1,-1) 是特征波形间的部分互相关函数, 表示用户 *m* 在第 i+q 比特间隔的数据对用户 *k* 在第 i 个比特 间隔的数据干扰; $n_k(i)(k = 1,2,...,K)$ 是噪声经匹配滤波后的 输出,其中

$$\mathcal{O}_{k,m}(q) = \int_{\tau_k}^{T+\tau_k} s_k(t-\tau_k) s_m(t+qT-\tau_m) \mathrm{d}t \tag{4}$$

设 $\mathbf{y}(i) = [y_1(i), y_2(i), \dots, y_K(i)]^T$, $\mathbf{b}(i) = [b_1(i), b_2(i), \dots, b_K(i)]^T$, $\mathbf{n}(i) = [n_1(i), n_2(i), \dots, n_K(i)]^T$, 则

$$y(i) = \mathbf{R}(-1)\mathbf{W}\mathbf{b}(i+1) + \mathbf{R}(0)\mathbf{W}\mathbf{b}(i) + \mathbf{R}(1)\mathbf{W}\mathbf{b}(i-1) + \mathbf{n}(i) \quad (5a)$$
$$= [\mathbf{R}(1) \ \mathbf{R}(0) \ \mathbf{R}(-1)][\mathbf{I}_3 \otimes \mathbf{W}] \begin{bmatrix} \mathbf{b}(i-1) \\ \mathbf{b}(i) \end{bmatrix} + \mathbf{n}(i) \quad (5b)$$

b(*i*+1)

式中 I_p 表示维数为 p 的单位阵; "⊗"表示 Kronecker 积; 部 分 相 关 矩 阵 R(q) 的 第 (k,m) 个 元 素 是 $\rho_{k,m}(q)$, $W = \text{diag}(\sqrt{w_1}, \sqrt{w_2}, \dots, \sqrt{w_K})$ 是正定对角矩阵;零均值高斯过 程 n(i)具有如下自相关矩阵

$$E\left\{\boldsymbol{n}(i)\boldsymbol{n}^{\mathrm{T}}(j)\right\} = \begin{cases} \sigma^{2}\boldsymbol{R}(1), \ j = i-1\\ \sigma^{2}\boldsymbol{R}(0), \ j = i\\ \sigma^{2}\boldsymbol{R}(-1), \ j = i+1\\ \boldsymbol{0}, \ \Xi \boldsymbol{\Sigma} \end{cases}$$
(6)

由式(4)可知, **R**(0) 是对称正定矩阵; **R**(1), **R**(-1) 分别是对 角元素均为零的上、下三角矩阵,且**R**(1) = **R**(-1)^T; 特别 地,由于当 $k \neq m$ 时, $\tau_k < \tau_m$ 或者 $\tau_k > \tau_m$,因此 $\rho_{k,m}(1)$ 与 $\rho_{k,m}(-1)$ 间其中之一必为零。

当所有用户的时延相等时,式(5b)就转化成了同步传输的情况。异步传输时,多址干扰(MAI)分量比同步系统复杂得多。若检测器处理的数据长度为P,令正定矩阵 $A_P = I_P \otimes W$,则基于模型式(5b),将匹配滤波器输出的P个数据向量排列成 $PK \times 1$ 的向量,如下所示

$$\begin{bmatrix} y(i) \\ y(i+1) \\ y(i+2) \\ \vdots \\ y(i+P-1) \end{bmatrix}$$

$$= \begin{bmatrix} R(1) & R(0) & R(-1) & 0 & 0 & \cdots & 0 \\ 0 & R(1) & R(0) & R(-1) & 0 & \cdots & 0 \\ 0 & 0 & R(1) & R(0) & R(-1) & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & R(1) & R(0) & R(-1) \end{bmatrix}$$

$$\cdot A_{P+2} \begin{bmatrix} b(i-1) \\ b(i) \\ b(i+1) \\ \vdots \\ b(i+P) \end{bmatrix} + \begin{bmatrix} n(i) \\ n(i+1) \\ n(i+2) \\ \vdots \\ n(i+P-1) \end{bmatrix}$$
(7a)

$$= \begin{bmatrix} R(0) & R(-1) & 0 & \cdots & 0 \\ R(1) & R(0) & R(-1) & \cdots & 0 \\ 0 & R(1) & R(0) & R(-1) & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & R(1) & R(0) \end{bmatrix} A_{P} \begin{bmatrix} b(i) \\ b(i+1) \\ b(i+2) \\ \vdots \\ b(i+P-1) \end{bmatrix}$$

$$+ \begin{bmatrix} R(1)Wb(i-1) \\ 0 \\ \vdots \\ R(-1)Wb(i+P) \end{bmatrix} + \begin{bmatrix} n(i) \\ n(i+1) \\ n(i+2) \\ \vdots \\ n(i+P-1) \end{bmatrix}$$
(7b)

将式(7a)等号左边向量以及式(7b)等号右边各项分别写成如 下的简化形式:

$$\overline{\mathbf{y}}(i) = \mathbf{R}\mathbf{A}_{P}\overline{\mathbf{b}}(i) + \overline{\mathbf{e}}(i) + \overline{\mathbf{n}}(i)$$
(8)

对比式(8)与式(7b)可知, *R* 是一个对称正定块对角矩阵, *ē* 表示用 *R* 近似后的偏差, *n*(*i*)~*N*(0, $\sigma^2 R$)。从式(5a)和式(7a) 中可以看出,匹配滤波器输出信号中,不同的用户相对时延将直接影响 MAI 的大小,分别对每一种时延组合仿真后再计算系统平均以及最差 BER 性能将是非常繁琐的任务,尤其是扩频增益较大且用户数较多的情况。另一方面,存在MAI 时,较准确地直接求出系统平均 BER 的显示表达式也将是非常困难。

3 相对时延与平均、最大、最小部分互相关系数

3.1 相对时延对多用户检测的性能影响

在异步 DS-CDMA 系统中,直接采用特征波形的传统接 收机时,其性能好坏主要取决于各用户特征波形的部分互相 关系数矩阵。用户相对时延改变时,系统 BER 性能变化较 大,尤其当系统用户数接近饱和时,系统 BER 性能变化更 大。

许多多用户检测器的输入信号是用系统中各用户特征 波形匹配滤波后以符号速率采样的数据 y(i)^[5-11]。虽然采用 多用户检测的接收机利用MAI结构的先验知识来试图消除 MAI,而对于部分互相关特性不如传统接收机敏感,但多用 户检测抑制多址干扰以及抗"远近"效应的能力也是有限的, 多用户检测输入数据向量 y(i)中的MAI仍将影响系统的BER 性能。部分互相关系数矩阵 R(q)(其中,q=-1,0,1)将直接影 响MAI的大小,而不同的相对时延对应于不同的部分互相关 系数,从而导致多用户检测的性能也不一样,仿真实验 2 和 3 中说明了这一点。虽然解相关检测器能完全消除MAI,但 同时也增强了背景噪声的影响^[5,6]; MMSE多用户检测器在 MAI与噪声抑制间寻求折中,但不同的部分互相关矩阵也对 应不同的性能^[4,7];在连续干扰抵消、多级检测器以及神经网 络接收机中同样存在这样的问题^[8-11]。

3.2 平均部分互相关系数

考虑与式(3b)等价的如下系统:

$$y_{k}(i) = \sum_{m=k+1}^{K} \sqrt{w_{m}} b'_{m}(i-1) |\rho_{k,m}(1)| + \sum_{m=1}^{K} \sqrt{w_{m}} b'_{m}(i) |\rho_{k,m}(0)| + \sum_{m=1}^{k-1} \sqrt{w_{m}} b'_{m}(i+1) |\rho_{k,m}(-1)| + n_{k}(i)$$
(9)

式中 $b'_m(i-q) = sgn[\rho_{k,m}(q)] \cdot b_m(i-q)$, (q=0,1,-1); $sign[\cdot]$ 表示符号函数; $|\cdot|$ 表示绝对值运算。BPSK 系统中,由于 $\{b_k(i)\}$ 是独立等概率的±1随机变量,故 $\{b'_m(i)\}$ 也是独立等概率的±1随机变量。因此,性能分析和系统仿真时,式(3b) 中的部分互相关系数可直接用其绝对值替代。由式(9)可知,在各用户发射功率一定的情况下,多址干扰的大小取决于部 分互相关系数绝对值的大小,而与其符号无关,因此,平均 MAI 条件等价于平均部分互相关系数的绝对值。

本文假设采用的码片波形 ψ(t) 为理想矩形窗函数,则 由式(4),得

$$\rho_{k,m}(q) = \frac{1}{N} \int_{\tau_k}^{T+\tau_k} \left(\sum_{i=0}^{N-1} \beta_i^k \psi(t - iT_c - \tau_k) \right) \\ \cdot \left(\sum_{j=0}^{N-1} \beta_j^m \psi(t + qT - jT_c - \tau_m) \right) dt$$
(10a)

$$= \frac{1}{N} \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \beta_i^k \beta_j^m \int_0^T \psi(t - iT_c) \psi(t + qT - jT_c - \tau) dt$$

$$(\diamondsuit \tau = \tau_m - \tau_k)$$
(10b)

$$= \begin{cases} \frac{1}{NT_{c}} \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \beta_{i}^{k} \beta_{j}^{m} [(i+1-j)T_{c}+qT-\tau], \\ \text{s.t.} \quad iT_{c} \leq \tau + jT_{c} - qT < (i+1)T_{c} \\ \frac{1}{NT_{c}} \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \beta_{i}^{k} \beta_{j}^{m} [\tau + (j+1)T_{c} - qT - iT_{c}] \\ \text{s.t.} \quad \tau + jT_{c} - qT \leq iT_{c} < \tau + (j+1)T_{c} - qT \\ 0, \quad 其 它$$

$$(10c)$$

式中 τ_k 与 τ_m 是均匀分布的随机变量,但若假设独立服从 [0,*T*]的均匀分布,则当分别计算 $\rho_{k,m}(q)$ 时,不满足 $\rho_{k,m}(1)$ 与 $\rho_{k,m}(-1)$ 间其中之一必为零的条件。因此,设 τ_k 服从[0,*T*] 的均匀分布,而 τ_m 服从 $\tau_k \leq \tau_m \leq T$ 的均匀分布,即设 $\rho_{k,m}(-1)=0$,则 τ_k 与 τ_m 的联合概率密度函数为

$$f_{\tau_k,\tau_m}(\tau_k,\tau_m) = \begin{cases} \frac{1}{T(T-\tau_k)}, & 0 \le \tau_k < \tau_m \le T\\ 0, & \nexists \dot{\mathbf{C}} \end{cases}$$
(11)

令 $\tau = \tau_m - \tau_k$, 其联合分布函数为

$$F_{\tau}(\tau) = \iint_{D} f_{\tau_{k},\tau_{m}}(\tau_{k},\tau_{m}) \mathrm{d}\tau_{k} \mathrm{d}\tau_{m}$$
(12)

其中 $D = \{(\tau_k, \tau_m), 0 \le \tau_k < \tau_m \le T\}$ 。 将式(11)带入式(12),可得

$$\begin{array}{l} \tau_{0}, & \tau \leq 0 \\ \frac{\tau(-\ln(\tau) + \ln(T) + 1)}{2}, & 0 < \tau \leq T \end{array}$$

$$(13)$$

 $\tau > T$

从而进一步可得 τ 的概率密度函数:

$$f_{\tau}(\tau) = \begin{cases} \frac{-\ln(\tau) + \ln(T)}{T}, & 0 < \tau \le T \\ 0, & \ddagger \dot{\nabla} \end{cases}$$
(14)

根据式 10(a) – 10(c)以及式(14), 令 $g_{k,m,q}(\tau) = |\rho_{k,m}(q)| f_{\tau}(\tau)$, 则部分互相关系数绝对值的均值为

$$E\left[\left|\rho_{k,m}(q)\right|\right] = \int_{0}^{T} g_{k,m,q}(\tau) \mathrm{d}\tau$$
(15)

图 1 中示出了 g_{1,2,0}(τ) 和 g_{1,2,1}(τ) 的曲线, 条件与第 5 节的仿 真实验一致。从图中可见, 直接写出式(15)的详细显示表达 式比较繁琐, 可以采用矩形逼近、梯形逼近、辛普生以及龙 贝格等数值积分方法求解^[15], 本文采用广受欢迎的辛普生递 推方法求解。将该系数构成的部分互相关矩阵代入式(5b)可 得平均MAI影响时以符号速率对匹配滤波器输出采样的接 收数据向量, 因此, 利用这一结果, 可以很容易评估和仿真 平均部分互相关系数条件下多用户检测系统的性能。

3.3 最大与最小部分互相关系数

为了获得用户数为*K*的异步系统中存在最大和最小部分 互相关系数的相对时延条件,考虑下面的多元非凸目标函数:

$$f(\tau_1, \cdots, \tau_K) = \sum_{k=1}^{K} \sum_{m=1}^{K} \sum_{q=-1}^{1} \left| \rho_{k,m}(q) \right|$$
(16)

则相应的相对时延分别如下:

$$(\tau_1, \cdots, \tau_K)_{\max} = \operatorname*{arg\,max}_{\tau_k, k=1, \cdots, K} f(\tau_1, \cdots, \tau_K) \tag{17}$$

$$(\tau_1, \cdots, \tau_K)_{\min} = \underset{\tau_k, k=1, \cdots, K}{\operatorname{arg\,max}} \frac{1}{f(\tau_1, \cdots, \tau_K)}$$
(18)

式(17)和式(18)是两个复杂的非线性优化问题。图 2,图 3 中 分别示出了 3 用户系统中用户 1 的时延恒为零时 *f*(0,*τ*₂,*τ*₃) 的曲线及其等高线图,条件与第 5 节的仿真实验一致。从图 中可见,式(16)是高度非线性的函数,存在很多局部极值采, 用基于梯度的传统优化方法很难求解该问题。

进化算法和模拟退火算法很适合求解这类优化问题^[16], 本文采用进化算法来求解,算法流程如图4所示。下面讨论 进化算法求解式(17)以及式(18)的几个关键问题:

适应度函数选取 根据目标优化函数,分别选取 $f(\tau_1, \dots, \tau_K)$ 以及 $1/f(\tau_1, \dots, \tau_K)$ 作为最大与最小部分互相关 系数存在条件的适应度函数;

编码 设种群数为 M, 表示为

$$\boldsymbol{\Pi} = \{\boldsymbol{\Pi}_m\}, m = 1, \cdots M \tag{19}$$

其中 Π_m 表示种群中第*m*个个体,定义如下:

$$\Pi_m = \left\{ \left\{ \tau_k^m \right\}_{k=1,\cdots,K}, f_m \right\}$$
(20)

K 表示染色体长度,与系统用户数相等; τ_k^m 表示第 *m* 个个体中第 *k* 个基因位,与时延相对应; f_m 表示第 *m* 个染色体的适应度,每个个体的存活依赖于这个值.最大与最小 MAI 条件下的适应度分别按如下计算:

$$f_m = f(\tau_1^m, \dots, \tau_K^m) \tag{21}$$

$$g_m = 1/f(\tau_1^m, ..., \tau_K^m)$$
(22)

求解式(17)时,算法中用 g_m 替代 f_m,算法步骤均相同,因此,下面主要讨论求解式(17)的算法实现。

图 4 求解最强和最弱 MAI 条件进化算法框图

 $F_{\tau}(\tau) =$

最优解获取 设 n 表示进化过程的第 n 代,则相应的种 群、第 m 个个体及其基因位和适应度分别表示为 Π^n , Π^n_m 、 $\tau^{m,n}_k$, f^n_m ; m_{\max} 表示第 n 代最佳个体标号,则第 n 代最佳 解为 $\left\{\tau^{m_{\max},n}_k\right\}_{\iota=1...,\kappa}$ 。

交叉算子 设(Π_{a}^{n}, Π_{b}^{n})_{Parent} 是第*n*代的"父代"个体, 且其适应度满足 $f_{a}^{n} \ge f_{b}^{n}$,若不满足这一要求,首先交换这 两个"父代"个体的顺序; P_{c} 是交叉概率,一般选择在 0.25~0.75 之间; r = U(0,1),其中U(a,b)表示服从[a,b]的 均 匀 分 布 随 机 变 量 ,则不满足 交 叉 概 率 时 , (Π_{a}^{n}, Π_{b}^{n})_{Child} = (Π_{a}^{n}, Π_{b}^{n})_{Parent};满足交叉概率时,按下式进 行启发式交叉操作

$$\begin{pmatrix} \Pi_{a}^{n} \end{pmatrix}_{\text{Child}} = \left(\Pi_{a}^{n} \right)_{\text{Parent}} + r \cdot \left[\left(\Pi_{a}^{n} \right)_{\text{Parent}} - \left(\Pi_{b}^{n} \right)_{\text{Parent}} \right]$$

$$\begin{pmatrix} \Pi_{b}^{n} \end{pmatrix}_{\text{Child}} = \left(\Pi_{a}^{n} \right)_{\text{Parent}}$$

$$(23)$$

上式中,若 $(\Pi_a^n)_{\text{Child}}$ 不在解空间中,即若式(24)中s = 0,则 重新产生随机数r,再利用式(23)获取新的个体,为避免陷入 死循环,进行t步操作后, $(\Pi_a^n)_{\text{Child}}$ 仍不在解空间中,则 $(\Pi_a^n, \Pi_b^n)_{\text{Child}} = (\Pi_a^n, \Pi_b^n)_{\text{Parent}}$ 。

$$s = \begin{cases} 1, & 0 \le (\tau_k)_{\text{Child}} \le T, \forall k \in \{1, \cdots, K\} \\ 0, & \exists \dot{\mathcal{C}} \end{cases}$$
(24)

变异算子 设 $(\tau_k^m)_{Parent}$ 是"父代"第 *m* 个染色体第 *k* 个基因位,采用如下的均匀变异算子:

$$(\tau_k^m)_{\text{Child}} = \begin{cases} U(0,T), & \text{ä} \neq P_m \\ (\tau_k^m)_{\text{Parent}}, & \text{IC} \end{cases}$$
 (25)

式中Pm表示变异概率。

选择算子 第 *n* 代个体的"父代"通过选择算子 *S*(·) 从 第 *n* – 1 代获得,即

$$(\Pi_m^n)_{\text{Parent}} = S(\Pi^{n-1}), \quad m = 1, \cdots, M$$
(26)

常用的选择算子有 (μ , λ) 确定性选择、轮盘赌选择、排序选择、排挤选择等方法^[13],本文采用第一种选择算子,即。设第n代所有个体适应度之和为 $f_{sum}^n = \sum_{m=1}^{M} f_m^n$,则第n-1 代第m个个体被选中的概率为 $P_s(m) = f_m^{n-1}/f_{sum}^{sum}$ 。

终止条件 本文设置终止条件为进化代数。进化算法是 一种采用"生成+检测"的多点全局并行搜索方法,虽然在 全局搜索方面具有较强能力,但在局部空间的搜索效果却不 明显^[17]。从图2可知,本文欲求解的目标函数具有较多的局 部极值,每个极值点都存在一定的邻域,若算法保证全局搜 索的同时,其局部搜索能力也较强,则求解本文的问题将进 一步提高收敛速度。从上述进化算法的流程中不难发现,算 法中起到关键作用的两个算子(即交叉和变异)都是在一定发 生概率的条件下,随机地、没有指导地迭代搜索。因此,它 们在为群体中的个体提供了进化机会的同时,也无可避免地 产生了退化的可能。Wang^[17]等人在借鉴自然免疫形态中的 免疫应答机制与细胞个体之间离散度与亲和度等机理的基 础上提出了一种免疫进化算法,与进化算法相比,该算法提 高了局部搜索能力,从而也加快了算法的收敛。

利用上述算法求解的最大、最小部分互相关系数存在的 相对时延条件,可以代入异步传输信号模型以计算和仿真采 用多用户检测技术的系统在最大、最小部分互相关系数条件 下性能。与评估平均部分互相关系数条件下系统性能不同的 是,进化算法获取的是相对时延值,因此,也适用于计算和 仿真以符号和码片速率对匹配滤波器输出采样的数据作为 输入的多用户检测系统的性能。

4 缓解边缘影响的解相关与MMSE多用户检测器

异步DS-CDMA系统的接收信号较同步系统复杂许多, 直接将适用于同步系统的多用户检测方法用于异步系统时, 其性能均不同程度地降低^[6,13]。作者在文献[6,14]中利用 R 是 正定对角占优矩阵这一特点,提出了异步系统中缓解了边缘 数据影响的去偏解相关以及MMSE多用户检测器,具有较强 的抑制多址干扰和抗"远近"效应能力,且复杂度和处理时 延均很小。选择处理的数据长度P=3,则缓解边缘影响的解 相关(DAEE)以及MMSE多用户检测器(MMSEAEE)分别为 $M_{DAEE} = [F_{21} F_{22} F_{23}](与 文 献 [6] 中 的 <math>M_{DBD}$ 等 价),

与同步系统中解相关和MMSE检测器的关系类似^[4,13],在高 信噪比条件下, $\bar{R}(0) = R(0) + \sigma^2 W^{-2} \approx R(0)$,因此MMSEAEE 检测器与DAEE检测器性能接近,但在低信噪比条件下, MMSEAEE检测器综合考虑了多址干扰和背景噪声的影响, 其性能优于 DAEE 检测器。令矩阵 $F_{21}R(1)$, $F_{23}R$ (-1), $M_{\text{MMSEAEE}}R$, $\overline{F}_{21}R(1)$, $\overline{F}_{23}R(-1)$ 的第 k 行向量分别为 $g_k^{21} = [g_{k,1}^{21}, g_{k,2}^{21}, \dots, g_{k,K}^{21}]$, $g_k^{23} = [g_{k,1}^{23}, g_{k,2}^{23}, \dots, g_{k,K}^{23}]$, $m_k = [m_{k,1}, m_{k,2}, \dots, m_{k,3K}] \overline{g}_k^{21} = [\overline{g}_{k,1}^{21}, \overline{g}_{k,2}^{21}, \dots, \overline{g}_{k,K}^{21}]$, $\overline{g}_k^{23} = [\overline{g}_{k,1}^{23}, \overline{g}_{k,2}^{23}, \dots, \overline{g}_{k,K}^{23}]$, \mathbb{I} $g_k^{\text{DAEE}} = [g_k^{21}, g_k^{23}]$, $g_k^{\text{MMSEAEE}} = [\overline{g}_k^{21}, \overline{g}_k^{23}]$, \mathbb{I} DAEE, MMSEAEE 检测器的渐进多用户 有效性(AME)分别为

$$\eta_{k}^{\text{DAEE}} \approx \max^{2} \left\{ 0, 1 - \sum_{j=1}^{K} \left[\left| \left(\boldsymbol{g}_{k} \right)_{j} \right| + \left| \left(\boldsymbol{g}_{k} \right)_{K+j} \right| \right] \right.$$

$$\left. \cdot \sqrt{w_{j} / w_{k}} \right\} / (\boldsymbol{F}_{22})_{k,k}$$
(29)

$$\eta_{k}^{\text{MMSEAEE}} \approx \max^{2} \left\{ 0, (\boldsymbol{g}_{k})_{2K+k} - \sum_{\substack{m=1\\(m,n)\neq(k,2)}}^{K} \sum_{n=0}^{4} \left| (\boldsymbol{g}_{k})_{nK+m} \right| \right.$$

$$\left. \cdot \sqrt{w_{m}/w_{k}} \right\} \left| \left(\boldsymbol{M}_{\text{MMSEAEE}} \right)_{k,k} \right|$$

$$(30)$$

式中 $(\cdot)_{j}$, $(\cdot)_{k,k}$ 分别表示向量的第j个元素以及矩阵的第(k,k)个元素。作者在文献[6,14]中仅详细分析了给定任意时延条件下受多址干扰影响时两种检测器的性能,但未评估存在平均、最大和最小部分互相关系数条件下的性能。

5 仿真实验

在 CDMA2000 系统中,码片速率可选择为 L×1.2288 Mcps (L=1,3,6,9,12)^[18],本文选择 L=3,即 Tc=0.2713μs。 考虑 10 用户的异步系统,采用扩频增益为 31 的Gold码,与 用户对应关系如表 1 所示。定义用户 k 的信噪比为

$$SNR_{\kappa} = w_{\nu} / N_0 \tag{31}$$

设期望用户为用户 1,其余用户均为干扰用户,便于比较, 仿真中假设各干扰用户信噪比均相等,即 $SNR_E = SNR_1$, $SNR_I = SNR_{other}$ 。

表1 仿真中采用的 Gold 码									
用户	31 位 Gold 码								
1	0 1 1 1 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 1 0 1 1 1 1 0 0 0 00								
2	$0\ 1\ 0\ 1\ 1\ 0\ 1\ 1\ 1\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 1$								
3	0 0 0 0 1 1 0 1 1 0 0 1 0 1 0 0 1 1 1 1								
4	$1\ 0\ 1\ 0\ 0\ 0\ 0\ 1\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 1\ 1$								
5	1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 0 1 1 1 0 0 0 1 0 1 0 1 1 1 0								
6	0 1 0 0 1 0 0 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 1 0 0 1 1 0 0								
7	0010100011110101001101101101101001								
8	1 1 1 0 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 0 1 1								
9	01101100010110010000111110110110								
10	011000100011011010101011010011101								

实验1 仿真采用进化算法和免疫进化算法[17]求解3用

户和 10 用户异步系统中存在最强MAI的相对时延条件,时 延单位均为(微秒)。均设用户 1 时延 $r_1 = 0$,进化算法参数分 别为M=20, $P_c=0.6$, $P_m=0.4$ 。进化算法求出的解和相应适应 度值如表 2 中所示。图 2,图 3 中用"*"示出了 3 用户系统中 的解,进化曲线如图 5,图 6 所示。

从图中可见,3用户系统比10用户系统收敛快,这是因 为处理维数增加的原因,但具有全局并行搜索能力的进化算 法仍能获取满意解;免疫进化算法加强了局部收敛能力,收 敛速度较进化算法略有提高。最近,进化算法的一些改进形 式已能处理 2000 维甚至更高维的函数优化^[19],利用这些新 的研究成果可以更好地解决本文的优化问题。

图 5 3 用户系统进化曲线

图 6 10 用户系统进化曲线

实验2 仿真了用户数为10的异步系统中信干比不变而 期望用户信噪比 SNR_F变化时DAEE, MMSEAEE, MMSE 多用户检测器和传统的匹配滤波单用户检测器(MFSUD)在 平均、最大和最小部分互相关系数条件对应的平均、最差以 及最优比特误码率(BER)性能,并与系统仅有一个期望用户 时MF检测器的单用户界(SUB)性能作了比较,如图7所示, 图中曲线标识如表3所示。其中,信干比 $SNR_I/SNR_E = 3dB$, 即存在一定的多址干扰;平均部分互相关系数条件对应于3.2 节利用数值积分方法得到的平均部分互相关矩阵:最大部分 互相关系数对应的相对时延如实验1中表2所示;由于采用 Gold码,系统同步时部分互相关性最小,若采用随机码作为 扩频码,则需要用 3.3 节介绍的进化算法求解该条件对应的 时延信息,这里不在赘述。同步系统中,式(8)中无边缘数据 项,因此,MMSE与MMSEAEE具有相同的BER性能,图中 仅画出了MMSEAEE检测器的最优性能。采用 10⁶个数据统 计性能。

实验 3 仿真了期望用户信噪比 SNR_E 不变而信干比变 化时的 BER 变化情况,如图 8 所示。其中 SNR_E = 9dB;其 余仿真条件同实验 2。

从图 7 和图 8 中可知, MMSEAEE 与 DAEE 检测器在平 均、最大和最小部分互相关系数条件下的平均、最差和最优

时延	$ au_2$	$ au_3$	$ au_4$	$ au_5$	$ au_6$	$ au_7$	$ au_8$	$ au_9$	$ au_{10}$	f		
3 用户系统	403408	5.9686								5.3871		
10 用户系统	0.7885	8.1134	0.2407	6.2051	4.5827	7.5740	1.5930	5.1185	6.2029	36.275		
表 3 BER 性能曲线图中标识与含义对应表												
标识	含义					标识		含义				
DAEEWORST 缓解边缘影响的解相关多用户检测最差性能					MMSEWORST 最小均方误差多用户检测最差			则最差性能				
DAEEAVG	缓的	缓解边缘影响的解相关多用户检测平均性能				MMSEAVG		最小均方误差多用户检测平均性能				
DAEEBEST	缓的	缓解边缘影响的解相关多用户检测最优性能				MFSUDWORST 匹配滤波单用户检测最差			是差性能			
MMSEAEEWORST	缓解达	缓解边缘影响的最小均方误差多用户检测最差性能				MFSUDAVG 匹配滤波单用户检测平均性			^Z 均性能			
MMSEAEEAVG	缓解达	缓解边缘影响的最小均方误差多用户检测平均性能				MFSUDBEST 匹配滤波单用户检测最优性能			最优性能			
MMSEAEEBEST	缓解达	缓解边缘影响的最小均方误差多用户检测最优性能				SUB 单用户界						

表 2 进化算法求解出的最大部分互相关系数时延条件

图 7 期望用户信噪比与误码率 图 8 信干比与误码率

BER 性能均大大优于匹配滤波单用户检测器和 MMSE 检测器,且其平均性能接近最优性能,表现出优异的抗多址干扰、 "远近"效应能力;从 MMSEAEE 检测器的最优与最差性能 比较可知,不同用户时延条件下的性能差异很大,评估系统 在时延条件下的平均性能是非常必要的; MMSEAEE 检测器 由于同时考虑了背景噪声和 MAI 的影响,在一定信干比情 况下,低信噪比时 MMSEAEE 检测器的 BER 性能优于 DAEE 检测器的,而在高信噪比时,两种检测器的 BER 性能接近 相等;当期望用户存在一定信噪比情况下,低信干比时, MMSEAEE 检测器的 BER 性能接近相等;从 MMSEAEE 与 MMSE 的性能比较可知,前者大大缓解了边缘数据比特 的影响,获取了较大的性能增益且降低了计算复杂度。

6 结束语

异步 DS-CDMA 系统中,用户间不同的相对时延对应不等的部分互相关系数,从而导致多用户检测器以及匹配滤波

器的性能差异较大,本文从信号模型入手,分析并利用数值 方法计算了等效的平均部分互相关系数矩阵,采用进化算法 这一先进的优化工具求解最大和最小部分互相关系数存在 的条件,然后对采用多用户检测技术的系统进行性能评估仿 真。平均部分互相关系数条件下性能评估方法适用于计算和 仿真以码片速率对匹配滤波器输出采样的数据作为输入的 多用户检测系统,而最大和最小部分互相关系数条件下的性 能评估方法适用于计算和仿真以符号以及码片速率对匹配 滤波器输出采样的数据作为输入的多用户检测系统。通过对 缓解边缘影响的去相关和 MMSE 多用户检测系统。通过对 缓解边缘影响的去相关和 MMSE 多用户检测系统评估表明, 在平均部分互相关系数条件下,这两种多用户检测技术的 BER 性能比较接近于在最小部分互相关系数条件下的性能, 具有良好的抑制多址干扰和抗"远近"效应能力。

参 考 文 献

- Adachi F, Sawahashi M, Suda H. Wideband DS-CDMA for next generation mobile communications systems. *IEEE Communication Magazine*, 1998, 36(9): 56 - 69.
- [2] McCormick A C, Al-Susa E A. Multicarrier CDMA for future generation mobile communication. *Electronics & Communication Engineering Journal*, 2002, 14(2): 52 - 60.
- [3] 尤肖虎,曹淑敏,李建东.第三代移动通信系统发展现状与展
 望.电子学报,1999,27(11A):3-8.
- [4] Verdu S. Multiuser Detection. UK: Cambridge University Press, 1998, Chapter 1 – Chapter 6.
- [5] Paris B P. Finite precision decorrelating receivers for multiusers CDMA communication systems. *IEEE Trans. on Comm.*, 1996, 44(4): 496 – 507.
- [6] 王伶, 焦李成, 刘芳. 一种去偏解相关多用户检测器. 信号处

理, 2002, 18(3): 208 - 211.

- [7] Madhow U. MMSE interference suppression for timing acquisiti-on and demodulation in direct-sequence CDMA systems. *IEEETrans. on Communications*, 1998, 46(8): 1065 – 1075.
- [8] Patel P, Holtzman J. Analysis of a simple successive interference cancellation scheme in DS/CDMA system. *IEEE Journal on Selected Areas in Communications*, 1994, 12(5): 796 – 807.
- [9] Varanasi M K, Aazhang B. Multistage detection in asynchronous code-division multiple-access communications. *IEEE Trans. on Communications*, 1990, 38(4): 509 – 519.
- [10] Aazhang B, Paris B P, Orsak G C. Neural networks for multiuser detection in CDMA communications. *IEEE Trans. on Comm.*, 1992, 40(7): 1212 – 1222.
- [11] 王伶, 焦李成, 刘芳. 一种子波网络空时多用户检测器. 自然 科学进展, 2002, 12(1): 90:94.
- Zhang X D, Wei W. Blind adaptive multiuser detection based on Kalman filtering. *IEEE Trans. on Signal Processing*, 2002, 50(1): 87 – 95.
- [13] 张贤达,保铮.通信信号处理.北京:国防工业出版社,2000:
 420-482.
- [14] 王伶.移动通信中的多用户检测与自适应空时接收机研究.[博士论文],西安: 西安电子科技大学,2004.

- [15] 归行茂,李重华,柴常智.数学手册.上海:上海科学普及出版社,1993:623-627.
- [16] 陈国良, 王煦法, 庄镇泉等. 进化算法及其应用. 北京: 人民 邮电出版社, 1996: 1-163.
- [17] Wang L, Jiao L C. Evolutionary algorithm based on immune strategy. *Chinese Journal of Electronics*, 2001, 10(2): 170 – 174.
- [18] Earg V K. IS-95 CDMA and CDMA2000: Cellular/PCS systems implementation (影印板). 北京: 电子工业出版社, 2002: 353-398.
- [19] Du H F, Jiao L C, Liu R C. Adaptive polyclonal programmingalgorithm with applications. Proceeding of the Fifth International Conference on Computational Intelligence and Multimedia Applications, Xi'an, 2003: 350 – 355.
- 王 伶: 男, 1978年生, 博士, 研究方向为多用户检测、空时信号 处理.
- 焦李成: 男,1959年生,教授,博士生导师,研究方向为智能信号 处理、通信信号处理以及模式识别.
- 陶海红: 女, 1976年生, 博士, 研究方向为雷达信号处理、进化计算.
- 刘 芳: 女, 1963 年生, 教授, 研究方向为智能信号处理、模式识别.