V-BLAST 与 Turbo 码结合的系统性能研究

常永宇 付景兴 杨大成 (北京邮电大学电信工程学院 北京 100876)

摘 要: 该文通过仿真研究了 V-BLAST 与 Turbo 码结合的系统性能。已有的 V-BLAST 处理算法与 Turbo 码的解码是分别进行的,这样在接收端 Turbo 码的译码器没有充分利用接收信号的软信息。通过将 V-BLAST 与 Turbo 码译码有机地结合起来,实现并不复杂,但性能却有明显的提高。

关键词: V-BLAST, Turbo 码, 软信息

中图分类号: TN929.5, TN911.22

文献标识码: A

文章编号: 1009-5896(2005)01-0150-03

System Performances of V-BLAST Combined with Turbo Code

Chang Yong-yu Fu Jing-xing Yang Da-cheng (College of Telecomm. Eng., Beijing Univ. of Posts and Telecomm., Beijing 100876, China)

Abstract Through simulation this paper studies the performance of the system of V-BLAST combined with turbo code. The current methods process the V-BLAST algorithm and turbo decode algorithm independently. So it does not utilize the soft information of the received signal sufficiently. By simulation a novel method is presented. Through the combination of these two algorithms the complexity of the system realization does not increase, but the performance improves obviously.

Key words V-BLAST, Turbo code, Soft information

1 引言

传统的 V-BLAST 加干扰消除算法^[1-3]的输出结果是经过量化的数字信号,因为在干扰消除时需要将信号量化,然后再通过信道译码,但在信号量化的过程中使信息出现了误差,这样送到 Turbo 译码器后,译码的性能便会变差。本文通过分析与仿真研究了软判 V-BLAST 与 Turbo 码结合的系统性能,即通过对解码器输入的量化后数据和量化前数据分别进行仿真,得出这两种情况下的误码率和误帧率,并进行了比较。

文章中用到的一些符号: $[\cdot]^T$ 代表矩阵的转置, $[\cdot]^H$ 代表矩阵的共轭转置, $[\cdot]^*$ 代表矩阵的共轭, $[\cdot]^{-1}$ 代表矩阵的逆阵, $Q(\cdot)$ 代表数值的量化。

2 系统模型及分析

2.1 V-BLAST 系统算法

为

设发送信号矢量为 $\mathbf{a} = (a_1, a_2, \dots, a_M)^T$,信道传输矩阵

$$\boldsymbol{H} = \begin{bmatrix} h_{11} & h_{12} & \cdots & h_{1M} \\ h_{21} & h_{22} & \cdots & h_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ h_{N1} & h_{N2} & \cdots & h_{NM} \end{bmatrix}$$

其中 h_{ij} 是第 j 个发送天线到第 i 个接收天线之间的信道冲激响应。接收信号矢量为

$$r_1 = Ha + v$$

其中 $v = (v_1, v_2, ..., v_N)^T$ 是噪声矢量, v_i 是方差为 σ^2 的 AGWN。

为了在接收端把并行传输的 M 个信号分离出来,在接收某一信号时,将其它信号当作干扰,通过迫零(ZF)运算判决出这个信号,在判决出信号后,把它的影响从接收符号中减去,然后再判决下一个符号,依此类推判决出所有的信号。

此方法的过程如下:

步骤 1 首先令 $G_1 = H^+$, H^+ 称为 H 的伪逆, $H^+ = (H^H H)^{-1} H^H$, 然 后 确 定 符 号 的 判 决 顺 序: $k_1 = \underset{j}{\operatorname{arg min}} \|(G_1)_j\|^2$, $(G_1)_j \ \&_M$ 为符号的判决顺序。

步骤 2

$$\boldsymbol{w}_{k_i}^{\mathrm{T}} = (\boldsymbol{G}_i)_{k_i} \tag{1}$$

$$y_{k_i} = \boldsymbol{w}_{k_i}^{\mathrm{T}} \boldsymbol{r}_i \tag{2}$$

$$\hat{a}_{k_i} = Q(y_{k_i}) \tag{3}$$

这样就判决出了一个信号。然后把它的影响从接收信号中减去,并确定降维后信道矩阵的伪逆阵,确定新的判决顺序:

$$r_{i+1} = r_i - \hat{a}_{k_i}(H)_{k_i}$$
 (4)

$$G_{i+1} = H_{\overline{k}_i}^+ \tag{5}$$

$$k_{i+1} = \underset{j \notin \{k_1, \dots, k_i\}}{\arg \min} \| (G_{i+1})_j \|^2$$
 (6)

接着判决第 k_{i+1} 个信号,依此类推判决出所有的信号,其中 $H_{k_i}^+$ 是将 H 的 k_1 , k_2 , … , k_i 列删除后的伪逆阵。

ZF 算法很容易扩展到最小均方误差(MMSE)迫零算法。 $H^+ = (\alpha^2 I + H^H H)^{-1} H^H$, 其中 α^2 是信噪比 SNR 的倒数。 MMSE 算法复杂度略有增加,但性能比 ZF 算法有明显改善。 2.2 Turbo 码的译码

Turbo 码译码结构^[4]如图 1 所示,主要组成部分是两个软输入软输出的译码器、两个相关交织器、一个解交织器和一个最终硬判决译码器。

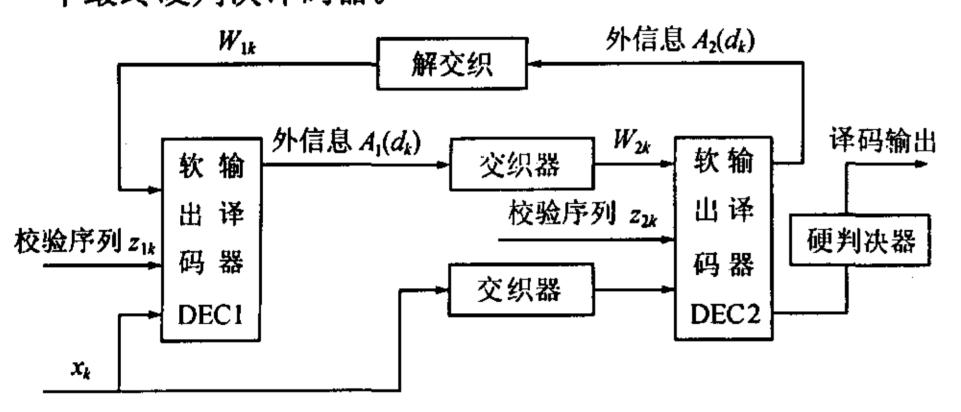


图 1 Turbo 译码结构

Turbo 译码的最主要特点就是采用了软输出迭代译码的思想,通过两个译码模块之间外部信息的传递来提高译码性能。

首先对 V-BLAST 处理后的序列经解调及串/并变换,得到接收信息序列 x_k 及接收校验序列 z_k ,其中 x_k 直接进入译码器 DEC1,而校验序列 z_k 经分解器分解为 z_{1k} 和 z_{2k} 两个校验序列,然后分别送入译码器 DEC1 和 DEC2。利用 x_k , z_{1k} 及先验概率信息(初始值为 0)输出一个软判决信息—— $\{\Lambda_{\mathbf{i}}(d_k)\}$,它包含了外部信息 $W_{\mathbf{i}k}$ 。 W_{2k} 与经交织后的 x_k 和 z_{2k} 一起送入进行译码器 DEC2,也得到针对每个译码比特 d_k 的 $\{\Lambda_2(d_k)\}$,但这个软判决信息未必是后验概率(A Posteriori Probability,APP)。在这个阶段两个译码器是独立工作的。

为达到 MAP (最大后验概率)的软判决信息, W_{2k} 经解交织器后重新输入 DEC1。DEC1 再输出一个软信息经交织后传给 DEC2。这样整个译码过程犹如两个译码器在打乒乓球,从而形成一个循环迭代的结构。各轮译码之间的信息连接就是通过外信息达到的。在经过一定迭代次数之后,由于外部信息与内部信息的相关性逐渐增大,外部信息提供的纠错能力随之减弱,译码性能将不再提高,最后通过对软信息作过零判决便得到最终的译码输出。

Turbo 译码的核心就是软入软出的成员译码。所谓软输出信息实际是信息比特的对数后验概率比。软信息的极性就是一般译码器的硬判决输出,软信息的绝对值反映可靠程度。由于传统的译码算法不能给出判决软信息,因此在最初

提出 Turbo 译码时采用了 MAP 算法。它是 Turbo 译码的最优算法。

MAP 算法采用对数似然比(Logarithm Likelihood Ratio, LLR 亦即后验概率(APP)的比值的对数值)函数作为其软判决的输出,即

$$\Lambda(d_k) = \lg \frac{P(d_k = 1 | R_1^N)}{P(d_k = 0 | R_1^N)}$$
 (7)

式中 R_1^N 为接收序列, $P(d_k = i | R_1^N)$ (i = 0, 1) 为比特 d_k 的后验概率。

译码器作过零硬判决:

$$\hat{d}_k = \begin{cases} 0, & \Lambda(d_k) < 0 \\ 1, & \Lambda(d_k) \ge 0 \end{cases}$$
 (8)

在实际应用中,由于 MAP 译码算法中需要大量的计算和内存存储空间。因此我们有必要对 MAP 算法进行简化,Log-MAP 算法就是把 MAP 算法中的乘除法运算转化为加减法运算,大大减少了运算量。

2.3 改进算法

已有的算法是将 V-BLAST 处理算法与 Turbo 译码算法 分别进行的,接收信号的软信息没有被 Turbo 码译码充分利用。这里将二者有机地结合起来,充分利用它的软信息。改进系统结构框图与传统算法框图分别如图 2,图 3 所示。

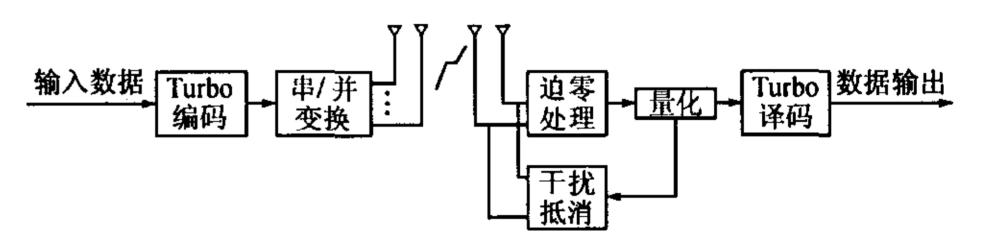


图 2 传统算法框图

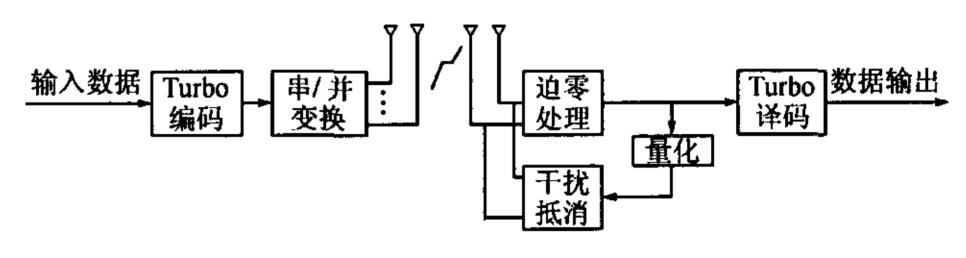


图 3 改进算法框图

从图 2 和图 3 对比可看出,改进的算法是将量化的数据 反馈进行干扰抵消,而输出到 Turbo 译码器中的数据是未经 量化的数据,这样能够保持接收数据的精确信息。

3 仿真结果

我们开发了链路仿真平台,分别采用 ZF 加干扰消除的 V-BLAST 算法与 Log-MAP Turbo 码译码算法、MMSE 加干扰消除的 V-BLAST 算法与 Log-MAP Turbo 码译码算法,信道采用独立瑞利信道,下面是通过仿真得到的是 V-BLAST 结合 Turbo 码的系统性能。图 4、图 5 分别是在不同收发天线个数条件下,对误码率和误帧率进行统计所得到的结果。具体仿真参数见表 1。

表	1	仿真参数表
42	Ţ	リルチャラ メスペン

仿真 条件	发送 天线 个数	接收 天线 个数	仿真的 帧数	每帧的 比特数	调制 方式	编码速率
1	2	4	10000	384	QPSK	1/2
2	4	6	10000	384	QPSK	1/2

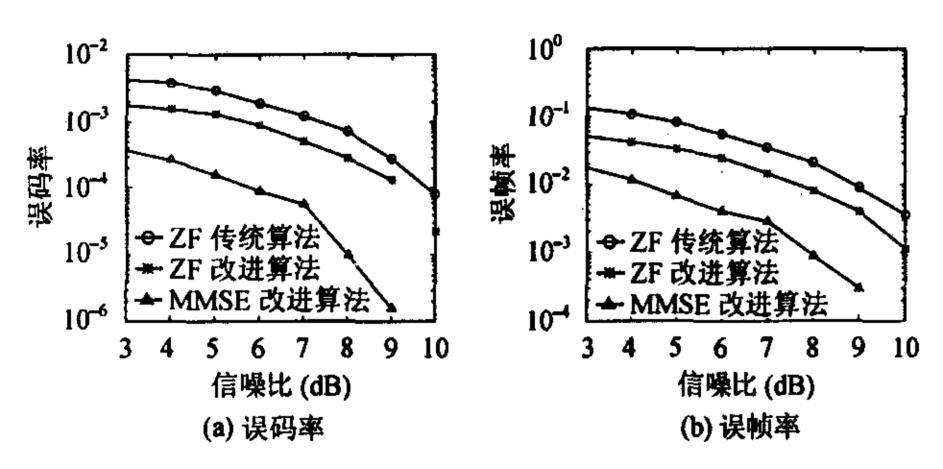


图 4 4 发送天线、6 接收天线情况下, ZF 传统算法、 ZF 改进算法以及 MMSE 改进算法误码率、误帧率的比较

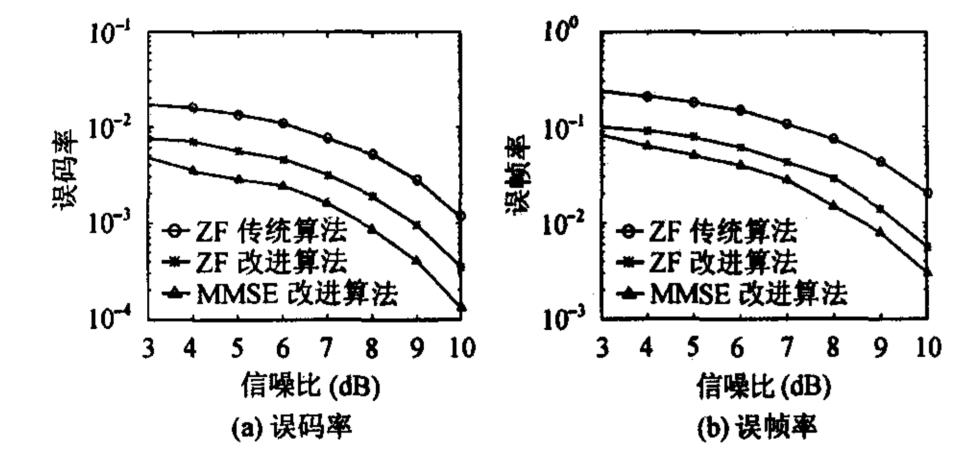


图 5 2 发送天线、4 接收天线情况下, ZF 传统算法、 ZF 改进算法以及 MMSE 改进算法误码率、误帧率的比较

4 总结

通过图 4、图 5 可以看出,ZF BLAST 算法采用了改进 算法的误码率和误帧率均比传统算法有较大的改进,这与我 们前面分析的结果是一致的。因为采用了软输出法后,可以 充分利用 V-BLAST 处理后数据的软信息,这个信息比量化后的数据要准确,因此性能自然要好。MMSE BLAST 算法误码率和误帧率比 ZF 算法的误码率和误帧率低,这与分析的结论也是一致的。另外,我们还看到采用 4 发送天线、6 接收天线时的误码率、误帧率要比采用 2 发送天线、4 接收天线时的误码率、误帧率要低。这是由于接收天线多带来的分集增益比较大的原因。

参考文献

- [1] Wolniansky P W, Foschini G J, Golden G D, Valenzuela R A. V-BLAST: An architecture for realizing very high data rates over the rich-scattering wireless channel [C]. Proc. IEEE ISSSE, Pisa, Italy, 1998: 230 235.
- [2] Foschini G J. Layered space-time architecture for wireless communication in a fading environment when using multiple antennas. *Bell Laboratories Technical Journal*, 1996,(2): 41 59.
- [3] Golden G D, Foschini G J, Valenzuela R A, Wolniansky P W. V-BLAST: An architecture for realizing very high data rates over the rich-scattering wireless channel. Proc. 1998 Int'l Symp. on Advanced Radio Techniques, Boulder, Colorado, Sept. 9 11, 1998: 295 300.
- [4] Berrou C, Glavieux A, Thitimasjshima P. Near Shannon limit error-correcting coding and decoding: Turbo-codes(1). In Proc., IEEE Int. Conf. on Communication, Geneva, Switzerland, May 1993: 1064 1070.

常永宇: 女,1963 年生,博士生,研究方向为: CDMA 移动通信 系统中的关键技术.

付景兴: 男,1967年生,博士生,研究方向为: CDMA 移动通信 系统中的关键技术.

杨大成: 男,1951年生,教授,博士生导师,研究方向为:移动通信.