Vol. 17 No. 6 Nov. 1995

基于旋转 Barnes-Wall 格的增益-波形 矢量量化器及其在序列图象 编码中的应用*

薛向阳 陈学青 樊昌信 (西安电子科技大学 信息科学研究所 西安 710071)

摘要 本文首先提出了一种基于旋转 Barnes-Wall 格的格型矢量量化器 (LVQ)的构造方法及快速量化算法,然后研究了以此 LVQ 为核心的增益-波形矢量量化器 (GSLVQ)的实现方法,最后探讨了 GSLVQ 在序列图象编码中的应用方案,并给出了较好的实验结果.

关键词 图象编码,矢量量化,格

1 引 盲

统计型矢量量化器^{II}(例如用 LBG 算法设计的矢量量化器 LBGVQ) 具有很强的压缩能力,因而在数据压缩领域得到了广泛的应用。然而这一类矢量量化器编码复杂度非常高(与编码速率成指数关系),用聚类算法对训练序列进行训练而得到的码书通常不是全局最佳的,对不平稳信源(比如千变万化的图象信源)很难找到一个普遍适用的码书等,这些缺陷在很大程度上限制了统计型矢量量化在图象编码中的应用。

不少学者^[2-9]致力于另一种类型的矢量量化研究,文中称之为格型矢量量化 (LVQ),它建立在格理论基础之上。由于格的对称几何特性和优良的代数特性,这使得 LVQ 具有许多特别的优点:构造码书非常简单,允许使用巨型码书且不必存储码书、具有快速量化算法等。但是,LVQ 主要适用于均匀分布的信源,对其它如高斯分布或拉普拉斯分布信源其量化性能往往不是最佳的,与统计型矢量量化相比其缺陷是压缩能力相对较低.尽管如此,LVQ 仍在图象编码中得到成功的应用^[3,6]。

LVQ 的研究主要在于寻求高性能的 LVQ 和快速量化算法。 格型矢量量化器的性能一般由其维数、格本身的特性和由格点组成的码书的空间形 状 决 定。16 维 Barnes-Wall 格 Λ_{16} 是 16 维空间的致密格,其旋转格具有与 Λ_{16} 相同的编码增益 $^{[2,5-7]}$ 和特别好

¹⁹⁹³⁻¹²⁻¹⁵ 收到,1994-05-20 定稿

^{*} 国家 863 计划 863-317 课题资助,校基金资助,综合业务网理论及关键技术国家重点实验室部分资助 薛向阳 男,1968 年生,博士生,现在复旦大学计算机科学博士后流动站从事图象编码研究.

陈学青 女,1967年生,硕士,现从事数字通信和图象编码等研究.

樊昌信 男,1931年生,教授,博士生导师,现从事语音和图象编码等研究.

的代数特性,因此本文将基于它的旋转格来实现格型矢量量化器,同时提出了一个简单有效的码书形成方案(即如何从无限多的格点中选取有限的格点来构成码书),接着重点研究了它的快速量化算法,然后以此 LVQ 为核心设计增益-波形矢量量化器 (GSLVQ),最后将 GSLVQ 用于序列图象编码中。

2 矢量量化和格的基本概念

这里先给出一些基本概念,主要包括矢量量化 (VQ)、格及基于格的 VQ 等,更详细的内容请参阅文献[1,2,4,6—8]。

2.1 矢量量化

令 $C = \{y_1, y_2, \cdots, y_m\}$ 由M个码矢 y_i , $1 \le i \le M$ 组成的码书, C 的大小|C| = M。令Q是对 N-维空间的全部划分, 共划分为M个量化胞腔,使得每个胞腔对应一个唯一的码矢量 y_i ,最后令 Φ 是从码矢 y_i 到序号 i 的映射。 那么码书 C、划分 Q和映射 Φ 一起构成了 VQ。

2.2 格 (Lattice)

从代数上讲,一个N-维格 Λ 是矢量集合,其在N-维空间中普通加法下构成群。从几何上讲,格是一个均匀覆盖N-维空间的无限规则的矢量阵列,最简单的N-维格是整数格 Z^N ,它由所有具有整数坐标的N-维矢量构成。一般地,格 Λ 可表示成:

$$\Lambda = \{x \mid x = c_1 a_1 + c_2 a_2 + \cdots + c_n a_n\},\,$$

其中 a_i 是格的基矢量, c_i 是整数。格是基矢量的整数线性组合,格的大小是无限的。一些著名的格有 E_s 格、Barnes-Wall 格和 Leech 格等。

2.3 基于格的矢量量化

VQ 的码书 C 有多种生成或构造方法。如果用聚类算法训练码书,则本文称之为统计型 VQ, 例如基于 LBG 算法的 VQ^{III}。如果从某个格中选取有限个数的格点作为 码书,则称之为 LVQ。因为格点的分布是均匀的,所以 LVQ 通常适合于无记忆均匀分布的信源。但是通过合理选取格点,可使 LVQ 适合于其它类型的源,比如对高斯分布的信源来说,应选取超球面之内的所有格点。一些研究者常将 LVQ 用作为波形量化器^{III}以推广 LVQ 的应用范围。

3 基于旋转 Barnes-Wall 格的格型矢量化器的构造

有许多格可用来构造性能优良的 LVQ,比如 E_8 、 Λ_{16} 、24 维 Leech 格(Λ_{24})等[2-4]。本文选用 Λ_{16} 的旋转格 $R\Lambda_{16}$ 。 Λ_{16} 最早由 Barnes 和 Wall 提出,它有很多构造方法,本文用二次结构 (squaring construction)[6,7],即

 $A_{16} = 4Z^{16} + 2RM(4,3) + RM(4,1) = 4Z^{16} + 2(16,15,2) + (16,5,8),$ (1) 其中 RM(r,n+1) 为 Reed-Muller 码, Z^{16} 是 16 维整数格。

由(1)式可见, Λ_{16} 是模 4 二进制格,且为 4 Z^{16} 格的 2^{20} 个陪集之并集,这意味着寻找最近格点(即量化过程)时需要巨大的存储量并搜索 2^{20} 个陪集,其存储和运算复杂度很

大. 为此,我们将 Λ_{16} 进行旋转得到旋转格 $R\Lambda_{16}$.

 $R\Lambda_{16} = 4Z^{16} + 2RM(4,2) + RM(4,0) = 4Z^{16} + 2(16,11,4) + (16,1,16)$. (2) 由 (2) 式可见, $R\Lambda_{16}$ 是 $4Z^{16}$ 格的 2^{12} 个陪集之并集,陪集数目减少为 $1/2^8$ 。 显然基于 $R\Lambda_{16}$ 格的量化过程要比 Λ_{16} 简单得多。

图 1 给出 $R\Lambda_{16}$ 格的格点形成过程(实际上对应 VQ 的译码过程,即已知序号(index) (用 N+12 bit 表示的一个整数) 而得到重建码矢量。在 LBGVQ 中译码仅仅是一个查表过程,但在 LVQ 中译码过程则是从 index 到相应格点的映射过程)。

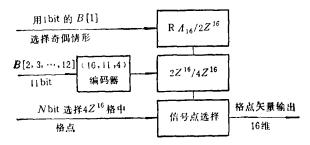


图 1 RA1. 格的格点形成过程

图 1 中,分组码(16,11,4)的生成矩阵为 G_1 ,对 G_1 进行线性变换后为 G_2 。 显然 G_1 和 G_2 将张成同样的码空间,所以可用 G_2 来形成 RA_{16} 格的格点。

	1111	0000	0000	0000		1111	0000	0000	0000
	1100	1100	0000	0000		0000	1111	0000	0000
	1010	1010	0000	0000		0000	0000	1111	0000
	1111	1111	0000	0000		0000	0000	0000	1111
	1100	0000	1100	0000		1100	1100	0000	0000
$G_1 =$	1010	0000	1010	0000	$G_2 =$	1010	1010	0000	0000
	1111	0000	1111	0000		1100	0000	1100	0000
	1000	1000	1000	1000		1010	0000	1010	0000
	1100	1100	1100	1100		1000	1000	1000	1000
	0101	1010	1010	1010		1100	1100	1100	1100
	1111	1111	1111	1111		1010	1010	1010	1010

从前面的构造可以看出,用(12+N) bit 就可以表示 $R\Lambda_{16}$ 格中的任意格点。 从 VQ 的角度来看,每个格点矢量都可看为码书中的码矢量,而相应的(12+N) bit 就可作为相应格点的序号。

 RA_{16} 格中的格点实际上是分布在以 $r(m) = 2\sqrt{2m}$ 为半径的一系列同心超球面上,每个球面又称为壳(Shell),则第 m 个壳的半径即为 r(m)。 随着 m 的增大,壳上的格点数目急剧增加,例如 RA_{16} 格的壳 0,1,2,3,4,5 上分别有 1,0,4320,61440,522720,2211840 个格点。在实际使用时 LVQ 只能选取有限数目的格点构造码书。已有的码书形成方法是将某个壳以内的所有格点作为码书^[3,4]。 如果选择壳 2 和 3 中所有格点作为码书,则码书中共有 65760 个格点,用等长码表示每个格点的序号时需要 17bit。 如果再把壳 4 中的格点加入到码书中,则共有 588480 个格点,此时需要 20bit 才能表示码书中每个格点.显然如此之多的格点对提高 LVQ 的压缩比是非常不利的。

这里提出一种简单有效的码书形成方案,即选 42¹⁶ 格点为原点(即全零矢量)的那些 RA₁₆ 格点。从(2)式可以看出这样的格点共有 2¹² 个。显然这种选择方案不仅减小了码书的大小(即提高了压缩比),而且又能够利用格的特性实现快速量化。不过因大大减少了码书中格点数目,量化器的性能将有所下降,表 1 给出两种格矢量量化器的性能比较,从表 1 可看出,当比特数目变为前者的 70.58 %时,其平均信噪比为前者的 75.94 %,即信噪比的下降程度要小些,从这个意义上讲我们提出的码书形成方法要优于通常的选取方法。

码书形成方法	码书大小	信源类型	平均信噪比	比特数
以 2 和 3 壳内的所 有格点作为码书	65760	独立高斯分布信源 (均值为零,方差为1)	5.03 dB (10000 个 测试矢量)	17 bit/点
取 42.6 格点 为 全 零矢量的 RA16 格 点作为码书	4096	作为测试信源	3.82 dB (同样的测试 矢量源)	12 bit/点
 比例关系	6.22%	/	75.94%	70.58%

表 1

4 快速格型矢量量化算法

假定 16 维欧氏空间 R^{16} 中一个实矢量 $X = (x_1, x_2, \dots, x_{16})$,那么对矢量 X 的量化问题就是决定码书中(注意并不是指 RA_{16} 格中所有格点) 离 Y 最近的格点。为减少运算量,我们将 RM(4,2) 码的生成矩阵 G_1 进行线性变换得到 G_2 ,具体的量化过程如下:

- (1) 首先根据输入矢量X计算一个欧氏距离测度表 $M_{n,k}$, 其中 $n=1,2,\cdots,16$, k=-3,-1,1,3, 见表 2.
- (2) 确定最佳陪集模式和奇偶格点情形,从而得到 $B[2\cdots12]$ 和 B[1]。 由生成矩阵 G_2 可见,若将 G_2 的每 4 列划分为一组,则在任一组的四坐标中只有 16 个不同的子模式,并且构成 8 个互补对。

首先对每组的每个子模式计算距离度量 $GM_{g,r}$, $GM_{g,r}$, 为 4 个 M 值之和,其中 8 指明组号, 5 指明子模式。 M 值的选取方法: 当子模式中相应位为 0 时选用 k=3 (对偶坐标

	农工 距离测及农 22 ***		
k	$M_{a\xi}$		
-3	$(X_n + 3)*(X_n + 3)$		
-1	$(X_n+1)*(X_n+1)$		
+1	$(X_n-1)*(X_n-1)$		
+3	$(X_n-3)*(X_n-3)$		

表 2 距离测度表 M,

注:表中 X_n 为矢量X的第n个坐标

情况)时的M值(对奇坐标情况,取 k=1);当子模式中相应位为 1 时选用 k=-1(对偶情况)时的M值(对奇情况 k=-3).

再由生成矩阵 G_2 的下 7 行形成 128 个模式,对其中每个模式计算距离度量 SM, SM 为 4 个 GM 之和,从而得到 256 个 SM 值(奇偶各 128 个),选择最小的 SM, 与其对应 的即是最佳的陪集模式(用来决定 $B[2\cdots 12]$ 的取值)和奇偶坐标情形 B[1].

(3)由(2)式的格构造公式就可以得到最近的格点,从而完成了 VQ 的量化过程,同时也得到了格点的标号 B.

我们可以看出,快速量化算法充分利用了格的优良代数特性,避免了对整个码书空间进行全搜索(在 LBGVQ 中常常使用这种耗时的全搜索量化方法),从而大大地减少了运算复杂度,整个量化算法仅需要 1599 次二元运算,具体比较见表 3.

算法类型) tha	乘	比较	二元运算总次数
全搜索算法	126976	65536	4095	196607
本文算法	1280	64	255	1599
复杂度之比	99.2:1	1024:1	16.05:1	122.95:1

表 3

5 基于 LVQ 的增益-波形矢量量化器

由于我们仅选择 $R\Lambda_{16}$ 格中极少数目的格点构造码书,所以此矢量量化器不能 代 表 R^{16} 中任意实矢量,解决的办法是将它用作波形量化器,见图 2。

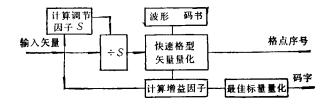


图 2 基于 LVQ 的增益-波形矢量量化

从图 2 可见,输入矢量首先需要除一个标量调节因子 S,从而将被量化矢量压缩到码书所规定的空间之内,以保证能在码书所规定的格点中找到一个与之对应的最近格点;然

后将得到的格点与输入矢量作点积相关运算,从而得到增益因子 G;最后再对G进行量 化编码。标量因子 S 的选取直接影响量化器的性能,这里给出一个确定 最 佳 S 和 实 现 GSLVQ 的算法:

- (1) 从被量化矢量 $X = (x_1, x_2, \dots, x_{16})$ 中寻找绝对值最大的坐标,即 $S^{\text{max}} = \max\{abs(x_i)\}, i = 1, 2, \dots, 16, abs(\cdot)\}$ 取绝对值运算。
- (2) 令 $t = 0,1,2,\dots,11$ 得到相应的 S 值为:

$$S' = 1 + 0.5t$$
, $S = S^{\text{max}}/S'$.

- (3) 用 S 去调节输入矢量 X,得到 Y = X/S.
- (4) 用上述 LVQ 量化 Y,得到相应格点 Y^Q 和标号 $B[1\cdots 12]$ 。
- (5) 计算最佳增益因子: $G = (X \cdot Y^{\varrho})/(Y^{\varrho} \cdot Y^{\varrho}), " \cdot "表示矢量的内积运算。$
- (6) 对G进行最佳标量量化得 G^Q .
- (7) 译码重建矢量为: $X^{rec} = Y^{\varrho} \cdot G^{\varrho}$.
- (8) 计算量化失真: $D' = (X X^{rec}) \cdot (X X^{rec})$.
- (9) 转(2)循环执行 12 次。
- (10) 在上述循环过程中记下最小的失真 D* 以及相应的量化结果。

为了进一步提高 GSLVQ 的压缩比,可用 Huffman 码表示码书中每个格点的标号,但必须先统计每个格点被使用的概率,然后构造一个具有 4096 个码字的 Huffman 码表;此外还可以对最佳增益因子 G 进行 DPCM 编码,以减少表示增益因子的比特数目。

6 增益-波形矢量量化器在序列图象编码中的应用

图 3 给出 GSLVQ 在序列图象编码中的应用方案。GSLVQ 用来对运动补偿后的差值图象进行压缩。

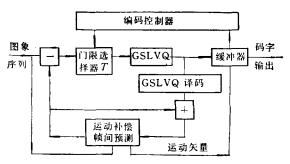
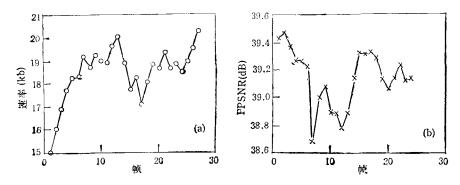


图 3 序列图象编码框图

由于差值图象中绝大部分信号的能量都很小,因此在图 3 中用门限选择器来选取信号幅度大于给定门限 T 的 16 维矢量,GSLVQ 仅对符合条件的矢量进行压缩,这样做大大提高了压缩比,同时编码控制器能够依据码字缓冲器的状态来调节 T 的大小,从而防止了缓冲区中的码字上溢或下溢。

在实验中我们采用 CIF 格式的 Miss America 序列图象来测试编码方案的性能,取 门限 $T \rightarrow 10$. 图 4 给出编码比特率和峰-峰信噪比曲线,其中编码比特率除了 GSLVO

码字外,还包括运动矢量的 Huffman 码和各种控制信息的编码比特(运动矢量和某些控 制信息的编码参考了 H·261 建议[9])。



编码实验结果(编码比特率和峰-峰信噪比)

图 5 实验结果图象

图 4 给出连续二十多帧序列图象的编码结果,得到平均比特率为 18.47kbit/帧,平均 峰-峰信噪比高达 39.14dB.

图 5 给出 5 幅图象(由于是序列图象,本文只取其中一帧的编码结果),包括相继两帧 原始图象(图 5(a),5(b)),运动补偿后的帧间差值图象(图 5(c)),经 GSLVQ 编码后的重 建差值图象(图 5(d))和译码图象(图 5(e)),其中图 5(c),5(d) 的象素值被放大 3 倍、从 图 5(c)来看,GSLVQ 有选择地对差值较大的区域进行量化编码,而这些区域能否进行有 效编码对译码图象质量来说是非常关键的。图 5(e)表明译码图象质量非常高,几乎看不 出图象的失真。

7 结 论

本文给出了基于旋转 Barnes-Wall 格的矢量量化器设计方法和快速量化算法,在此基础上设计了增益-波形矢量量化器,并将它用于序列图象编码之中。从实验结果 可 看出,GSLVQ 非常适合于对差值图象进行压缩。

致谢 作者非常感谢王新梅教授给予的指导。

参 考 文 献

- [1] Linde Y, Buzo A, Gray R M. IEEE Trans. on COM, 1980, COM-28(1): 84-95.
- [2] Conway J H, Sloane N J A. Sphere Packings, Lattices and Groups. New York: Springer-Verlag-1988, 31-131.
- [3] Antonini M. Barlaud M, Mathieu P. Image coding using lattice vector quantization of wavelet coefficients, ICASSP' 91, 2273-2276.
- [4] Samposn D, Ghanbari M. IEE Proc.-1, 1993, 140(1): 56-66.
- [5] 陈学青. 分组编码调制研究: [硕士论文]. 西安: 西安电子科技大学,1992.
- [6] Forney, Jr G D. IEEE Trans. on IT, 1988, IT-34(9): 1123-1151.
- [7] Forney, Jr G D. IEEE Trans. on IT, 1988, IT-34 (9): 1152-1187.
- [8] Eyuboglu M V, Forney Jr G D. IEEE Trans. on IT, 1993, IT-39(1): 46-59.
- [9] Recommendation H. 261, Geneva: 1990.

ROTATED BARNES-WALL LATTICE BASED VECTOR QUANTIZER AND ITS APPLICATION IN IMAGE-SEQUENCE CODING

Xue Xiangyang Chen Xueqing Fan Changxin
(Information Science Institute, Xidian University, Xi'an 710071)

Abstract A new method is presented to design a rotated Barnes-Wall lattice based vector quantizer (LVQ). The construction method of the LVQ and its fast quantizing algorithm are described, then the gain-shape vector quantizer (GSLVQ) with LVQ as shape VQ is discussed. Finally the GSLVQ is used in image-sequence coding and good experimental results are obtained.

Key words Image coding, Vector quantization, Lattice