面向OFDM的同时同频全双工双向高谱效中继方案

刘 毅*¹⁰² 吴 炯¹ 杨 普¹ 南海涵¹ 张海林¹
 ¹(西安电子科技大学综合业务网理论及关键技术国家重点实验室 西安 710071)
 ²(中国电子科技集团公司数据链技术重点实验室 西安 710068)

摘 要:针对同时同频全双工双向中继网络,该文提出一种对中继剩余自干扰信号具有鲁棒性的双向中继传输方 案。该文首先对中继剩余自干扰信号进行分析,将无限迭代的剩余自干扰信号建模成等效多径信号,并利用 OFDM的循环前缀对抗等效多径现象,以降低中继剩余自干扰信号对系统传输性能的影响。在等效多径方案的基 础上,以系统信干噪比最大化为目标,推导出全双工双向中继传输的最佳放大因子求解方法。最后,通过仿真验 证所提出的双向中继传输方案的有效性。

关键词:无线通信;全双工;中继传输;等效多径;放大转发
 中图分类号:TN92
 文献标识码:A
 DOI: 10.11999/JEIT180451

文章编号: 1009-5896(2019)02-0402-07

High Spectrum Efficiency Full-duplex Two-way Relay Scheme for OFDM

LIU $Yi^{(0)}$ WU Jiong⁽¹⁾ YANG $Pu^{(1)}$ NAN Haihan⁽¹⁾ ZHANG Hailin⁽¹⁾

⁽¹⁾(State Key Laboratory of Integrated Service Network, Xidian University, Xi'an 710071, China)

⁽²⁾(Key Laboratory of Data Link, China Electronics Technology Group Corporation, Xi'an 710068, China)

Abstract: For the full-duplex two-way relay network, a two-way relay transmission scheme that is robust to the relay residual self-interference signal is proposed. Firstly, the residual self-interference signal of the relay is analyzed, the infinite self-interfering signal is modeled as an equivalent multipath signal, and the cyclic prefix of OFDM is used to combat the equivalent multipath phenomenon to reduce the residual self-interference signal impact. Based on the equivalent multipath scheme, the paper aims at maximizing the SINR of the system, and deduces the optimal amplification factor solving method of the relay in bidirectional full-duplex relay transmission. Finally, the simulation verifies the correctness of the optimal amplification factor of relay, and the effectiveness of the proposed two-way relay transmission scheme is verified through simulation.

Key words: Wireless communication; Full-duplex; Relay transmission; Equivalent multipath; Amplify and forward

1 引言

中继协作通信具有提升无线通信系统的传输性能、扩大其覆盖范围、使系统获得分集增益等优点^[1,2],因此它在工程与学术方面都获得了广泛的关注与研究。现有的中继技术按照中继转发协议可分为放大转发、译码转发、编码协作等^[3-6];按照双工模式

可分为半双工中继和全双工中继^[7,8]。传统的中继 双工模式多为半双工模式,可分为时间正交的时分 双工和频率正交的频分双工。全双工技术能够在同 一时隙、同一频率上对信号进行传输,在理论上能 将系统的吞吐量提高1倍。但全双工模式会引发环 路自干扰现象,导致该工作模式受到的干扰过大而 不可用。近年来,许多科研人员在全双工自干扰消 除技术方面进行了深入研究,在空域、模拟域、数 字域提出了大量的自干扰消除方法^[9,10],使全双工 技术得到了快速的发展。但在全双工中继传输中, 中继依旧有剩余自干扰信号的存在,对系统的传输 性能造成负面影响。目前对于剩余自干扰信号的处 理思想主要有两类: (1)将剩余自干扰抑制到足够 小,使其能够被当作噪声处理^[11,12]。文献[11,12]中

收稿日期: 2018-05-11; 改回日期: 2018-10-10; 网络出版: 2018-11-02 *通信作者: 刘毅 yliu@xidian.edu.cn

基金项目:国家自然科学基金(61671341),数据链技术重点实验室 开放基金(CLDL-20182412),国家111计划项目(B08038)

Foundation Items: The National Natural Science Foundation of China (61671341), The Foundation of CETC Key Laboratory of Data Link Technology (CLDL-20182412), The National 111 Project (B08038)

将中继剩余环路自干扰建模成递归回路信号,通过 空域、时域联合的方法对自干扰信号进行消除。 (2)将剩余自干扰信号当作有用信号处理,在接收 端利用自干扰信号协助系统进行信号解调^[13-16]。文 献[13,14]中利用OFDM和SC-FDE的循环前缀降低 中继剩余环路自干扰的影响;文献[15,16]利用空时 编码,在接收端充分利用自干扰信号,达到满协作 分集的效果。本文基于第(2)种处理思想,在全双 工双向中继放大转发传输模型下,通过分析中继剩 余环路自干扰的迭代过程,发现中继剩余环路自干 扰信号可等效为多径信号,提出了利用OFDM的抗 多径特性消除自干扰信号对系统性能产生的影响的 方案。同时,通过最大化系统的信干噪比,确定中 继最佳放大因子,保证系统处于最佳的传输状态。

2 全双工双向中继传输模型

本文基于经典的两跳传输网络展开分析,系统 模型如图1所示。模型总共包括3个节点,分别为两 个源节点S1与S2,一个中继节点R。节点的工作模 式为全双工模式,因此各个节点处会产生自干扰信 道。各节点在空域、射频域自干扰消除方法处理后, 剩余自干扰信道可建模为准静态瑞利衰落信道^[13,14], 信道系数分别为 h_{11} , h_{22} , $h_{\rm hi}$ 。节点间的信道也为准 静态瑞利衰落信道,且节点间信道对称,设节点 S1与节点R之间的信道系数为 h_{1r} ,节点S2与节点 R之间的信道系数为 h_{2r} ,节点S1与节点S2之间的 信道系数为 h_{12} 。两个源节点同时发送OFDM信号, 在第i时隙($i \ge 0$),S1发送信号 $x_1(i)$,S2发送信号 $x_2(i)$;中继节点R在i时隙接收信号r(i),经过中继 放大后发送信号t(i)。由此可知,r(i)的表达式为

 $r(i) = h_{1r}x_1(i) + h_{2r}x_2(i) + h_{li}t(i) + n_R(i)$ (1) $h_{1r}x_1(i) + h_{2r}x_2(i)$ 为来自两个源节点的信号, $h_{li}t(i)$ 为中继剩余环路自干扰信号, $n_R(i)$ 为中继高 斯白噪声信号, $n_R \sim N(0, \sigma_R^2)$ 。

假设中继放大因子为β,不失一般性,令中继 放大处理时延为1个时隙,则中继发送信号t(i)的表 达式为

$$t(i) = \begin{cases} 0, & i = 0\\ \beta r(i-1), & i \ge 1 \end{cases}$$
(2)

图 1 两跳全双工双向中继传输模型

将式(1)代入式(2)并进行化简,可得

$$t(i) = \sum_{j=1}^{\infty} |\beta h_{\rm li}|^{j-1} \beta [h_{1r} x_1(i-j) + h_{2r} x_2(i-j) + n_R(i-j)]$$
(3)

$$y_{1}(i) = h_{11}x_{1}(i) + h_{1r}t(i) + h_{12}x_{2}(i) + n_{1}(i)$$

$$= h_{12}x_{2}(i) + h_{1r}\sum_{j=1}^{\infty} |\beta h_{li}|^{j-1} \beta h_{2r}x_{2}(i-j)$$

$$+ h_{1r}\sum_{j=1}^{\infty} |\beta h_{li}|^{j-1} \beta h_{1r}x_{1}(i-j) + h_{11}x_{1}(i)$$

$$+ h_{1r}\sum_{j=1}^{\infty} |\beta h_{li}|^{j-1} \beta n_{R}(i-j) + n_{1}(i)$$
(4)

式中,等号右边前两项为有用信号,第3项为全双 工中继传输中的回波干扰信号,回波干扰可由网络 编码技术完全消除,第4项为第1源节点发送信号的 剩余环路自干扰,最后两项为噪声信号,其中 $n_1 \sim N(0, \sigma_1^2)$ 。因此,式(4)可以简化为

$$y_{1}(i) = h_{12}x_{2}(i) + h_{1r}\sum_{j=1}^{\infty} |\beta h_{li}|^{j-1} \beta h_{2r}x_{2}(i-j) + h_{11}x_{1}(i) + n'_{1}(t)$$
(5)

其中, $n'_{1}(t) = h_{1r} \sum_{j=1}^{\infty} |\beta h_{li}|^{j-1} \beta n_{R}(i-j) + n_{1}(i)$ 。 同理,第2源节点*S*2处的接收信号 $y_{2}(i)$ 为

$$y_{2}(i) = h_{12}x_{1}(i) + h_{2r}\sum_{j=1}^{\infty} |\beta h_{li}|^{j-1} \beta h_{1r}x_{1}(i-j) + h_{22}x_{2}(i) + n'_{2}(t)$$
(6)

其中, $n'_{2}(t) = h_{2r} \sum_{j=1}^{\infty} |\beta h_{\mathrm{li}}|^{j-1} \beta n_{R}(i-j) + n_{2}(i),$ $n_{2} \sim N(0, \sigma_{2}^{2}).$

3 中继等效多径与最佳放大因子

3.1 中继等效多径推导

为便于理解又不失一般性,本节以在第1时隙的发射信号x₁(1)和x₂(1)为例,对中继等收发信号进行分析。根据式(1)和式(3),在不考虑噪声和源节点的剩余环路自干扰的情况下,不同时隙下收发信号如表1所示。

从表1中可以看出,对于发送信号 $x_2(1)$,在 $S1节点处的接收信号<math>y_1^{(1)}(i)$ ($i \ge 1$)为

$$y_1^{(1)}(i) = \begin{cases} h_{12}x_2(1), & i = 0\\ (\beta h_{\rm li})^{i-1}\beta h_{1r}h_{2r}x_2(1), & i \ge 1 \end{cases}$$
(7)

表 1 信号x1(1)和x2(1)在各节点处的传输情况

时隙 <i>i</i>	0	1	 i	
$r^{(1)}(i)$	$h_{1r}x_1(1) + h_{2r}x_2(1)$	$(\beta h_{\rm li})^1 (h_{1r} x_1(1) + h_{2r} x_2(1))$	 $(\beta h_{ m li})^i (h_{1r} x_1(1) + h_{2r} x_2(1))$	
$t^{(1)}(i)$	0	$\beta(h_{1r}x_1(1) + h_{2r}x_2(1))$	 $(\beta h_{\rm li})^{i-1}\beta(h_{1r}x_1(1)+h_{2r}x_2(1))$	
$y_1^{(1)}(i)$	$h_{12}x_2(1)$	$eta h_{1r}h_{2r}x_2(1)$	 $(eta h_{\mathrm{li}})^{i-1}eta h_{1r}h_{2r}x_2(1)$	
$y_2^{(1)}(i)$	$h_{12}x_1(1)$	$eta h_{1r}h_{2r}x_1(1)$	 $(\beta h_{\rm li})^{i-1}\beta h_{1r}h_{2r}x_1(1)$	

i = 0时隙*S*1节点接收到的是来自*S*2节点的直 达链路信号, $i \ge 1$ 时隙接收到的信号为*S*2节点信 号经过中继节点*R*到达*S*1节点的信号。分析 $i \ge 1$ 时 隙的接收信号 $y_1^{(1)}(i)$,可以将这些信号等效成 $x_2(1)$ 经过等效多径信道到达节点*S*1的信号,等效 多径表达式为 $h_{1r} h_{2r} h_R$,其中 $h_R = [h(1) h(2) \cdots$ $h(l) \cdots], h(l) = \beta(\beta h_{li})^{l-1}, l \ge 1$ 。综合直达链路 信号,对于节点*S*1的等效多径信道表达式为 $[h_{12} h_{1r} h_{2r} h_R]$ 。

因此, *S*1节点的接收信号可以等效成无穷多径 信号。观察 $y_1^{(1)}(i)$ 信号的表达式,在 $i \ge 1$ 条件下, 每个时隙的接收信号都为前一时隙的 βh_{li} 倍。由文 献[12]可知,当 $\beta^2 < 1/|h_{li}|^2$,即 $|\beta h_{li}| < 1$ 时,中继 环路剩余自干扰信号每次迭代后的幅度都比前一次 小,满足全双工中继节点非震荡的条件。因此对于 $|\beta h_{li}|^i 必存在一个正整数指数L,使得<math>|\beta h_{li}|^L \le \varepsilon$, ε 表示一个极小的正数,对于指数大于*L*的自干扰拖 尾部分,可以认为足够小,当作是噪声来处理。因 此,等效多径模型可以简化为 $[h_{12} h_{1r} h_{2r} \tilde{h}_R]$,其 中 $\tilde{h}_R = [h(1) h(2) h(3) \cdots h(L)], h(l) = \beta(\beta h_{li})^{l-1},$ $1 \le l \le L$ 。图2为*S*2节点到*S*1节点的全双工中继等 效多径示意图。

系统中所有节点都工作在同一频率上,因此从 S1到S2的信道与从S2到S1的信道具有对称性。因此从S1节点发送的信号到达S2节点也经历相同的等 效多径信道 $\begin{bmatrix} h_{12} \ h_{1r} \ h_{2r} \ \tilde{h}_{R} \end{bmatrix}$,等效多径示意图如图3 所示。

将无限迭代的中继剩余自干扰信号等效成L径

图 2 S2节点到S1节点的全双工中继等效多径示意图

虚拟多径信号,再与直达链路信号合并,端到端的 多径数总计为L+1径。利用OFDM的循环前缀抗多 径的原理,可以有效地对抗中继剩余自干扰信号。 只需将OFDM循环前缀的长度设置为大于等于 L+1即可。

3.2 中继最佳放大因子求解方法

3.1节通过对源节点*S*1,*S*2处接收信号的分析, 建立了全双工双向中继传输等效多径模型。本节将 通过系统信干噪比最大化确定中继最佳放大因子。

以源节点*S*1的接收信号为例进行分析。式(5) 已经给出*S*1节点接收信号*y*1(*i*)的表达式,根据 3.1节的等效多径模型,可将式(5)进一步改写为

$$y_{1}(i) = h_{12}x_{2}(i) + h_{1r}h_{2r}\beta \sum_{j=1}^{L} |\beta h_{\rm li}|^{j-1} x_{2}(i-j) + h_{1r}h_{2r}\beta \sum_{j=L+1}^{\infty} |\beta h_{\rm li}|^{j-1} x_{2}(i-j) + h_{11}x_{1}(i) + n'_{1}(t)$$
(8)

式(8)中,有用信号部分为

$$y_{1x}(i) = h_{12}x_2(i) + h_{1r}h_{2r}\beta \sum_{j=1}^{L} |\beta h_{\rm li}|^{j-1} x_2(i-j)$$
(9)

假定信号 $x_1(1)$ 和 $x_2(1)$ 的能量归一化,则有用信号 能量表达式为

$$P_{1x} = |y_{1x}(i)|^2 = |h_{12}|^2 + |h_{1r}|^2 |h_{2r}|^2 \beta^2 \frac{1 - |\beta h_{\rm li}|^{2L}}{1 - |\beta h_{\rm li}|^2}$$
(10)

干扰信号部分为

图 3 S1节点到S2节点的全双工中继等效多径示意图

$$y_{\rm li}(i) = h_{1r} h_{2r} \beta \sum_{j=L+1}^{\infty} |\beta h_{\rm li}|^{j-1} x_2(i-j) + h_{11} x_1(i)$$
(11)

干扰信号能量表达式为

$$P_{\rm li} = |y_{\rm li}(i)|^2 = |h_{11}|^2 + |h_{1r}|^2 |h_{2r}|^2 \beta^2 \frac{|\beta h_{\rm li}|^{2L}}{1 - |\beta h_{\rm li}|^2}$$
(12)

噪声信号部分为

$$\gamma_{1} = \frac{P_{1s}}{P_{li} + P_{1r}} = \frac{|h_{12}|^{2} \left(1 - |\beta h_{li}|^{2}\right) + |h_{1r}|^{2} |h_{2r}|^{2} \beta^{2} \left(1 - |\beta h_{li}|^{2L}\right)}{|h_{1r}|^{2} |h_{2r}|^{2} \beta^{2} |\beta h_{li}|^{2L} + |h_{1r}|^{2} \beta^{2} \sigma_{R}^{2} + \left(1 - |\beta h_{li}|^{2}\right) \left(\sigma_{1}^{2} + |h_{11}|^{2}\right)}$$
(15)

令 $\alpha = |h_{li}\beta|^2$,则信干噪比表达式可化简为

$$\gamma_{1} = \frac{|h_{\rm li}|^{2} |h_{12}|^{2} (1-\alpha) + |h_{1r}|^{2} |h_{2r}|^{2} \alpha \left(1-\alpha^{L}\right)}{|h_{1r}|^{2} |h_{2r}|^{2} \alpha^{L+1} + |h_{1r}|^{2} \alpha \sigma_{R}^{2} + |h_{\rm li}|^{2} (1-\alpha) \left(\sigma_{1}^{2} + |h_{11}|^{2}\right)}$$
(16)

S2节点的接收信号与S1节点的接收信号具有对称性,因此S2节点处的信干噪比γ2为

$$\gamma_{2} = \frac{|h_{\rm li}|^{2} |h_{12}|^{2} (1-\alpha) + |h_{1r}|^{2} |h_{2r}|^{2} \alpha \left(1-\alpha^{L}\right)}{|h_{1r}|^{2} |h_{2r}|^{2} \alpha^{L+1} + |h_{2r}|^{2} \alpha \sigma_{R}^{2} + |h_{\rm li}|^{2} (1-\alpha) \left(\sigma_{2}^{2} + |h_{22}|^{2}\right)}$$
(17)

选取使最小信干噪比最大化的放大因子作为中继最优放大因子,则优化问题的数学表达式为

$$\beta_{\text{opt}} = \arg\max_{\beta} \left\{ \min\left(\gamma_1, \gamma_2\right) \right\}$$
(18)

式(16)与式(17),两个表达式的分子相同,仅分母不同,因此71与72的大小可以由比值法确定:

$$\frac{\gamma_{1}}{\gamma_{2}} = \frac{\left|h_{1r}\right|^{2} \left|h_{2r}\right|^{2} \alpha^{L+1} + \left|h_{2r}\right|^{2} \alpha \sigma_{R}^{2} + \left|h_{\mathrm{li}}\right|^{2} \left(1-\alpha\right) \left(\sigma_{2}^{2} + \left|h_{22}\right|^{2}\right)}{\left|h_{1r}\right|^{2} \left|h_{2r}\right|^{2} \alpha^{L+1} + \left|h_{1r}\right|^{2} \alpha \sigma_{R}^{2} + \left|h_{\mathrm{li}}\right|^{2} \left(1-\alpha\right) \left(\sigma_{1}^{2} + \left|h_{11}\right|^{2}\right)} \Leftrightarrow \frac{\left|h_{2r}\right|^{2} \alpha \sigma_{R}^{2} + \left|h_{\mathrm{li}}\right|^{2} \left(1-\alpha\right) \left|h_{22}\right|^{2}}{\left|h_{1r}\right|^{2} \alpha \sigma_{R}^{2} + \left|h_{\mathrm{li}}\right|^{2} \left(1-\alpha\right) \left|h_{11}\right|^{2}} \tag{19}$$

两个源节点对于自干扰信号的抑制能力可以近 似认为相等,即 $|h_{11}| \approx |h_{22}|$,因此式(19)可以进一 步等效为

$$\frac{\gamma_1}{\gamma_2} \Leftrightarrow \frac{|h_{2r}|}{|h_{1r}|} \tag{20}$$

`

由式(20)得到信干噪比与信道系数*h*_{1r}, *h*_{2r}的关系式:

$$|h_{1r}| \ge |h_{2r}|, \qquad \gamma_1 < \gamma_2 \\ |h_{1r}| < |h_{2r}|, \qquad \gamma_1 > \gamma_2 \\ \end{cases}$$
(21)

当 $|h_{1r}| \ge |h_{2r}|$ 时, $\gamma_1 < \gamma_2$,以最优化最差节点 性能为目标,求解令 γ_1 取得最大值的放大因子为中 继最优放大因子。因为 γ_1 为分数形式,可通过 $\left(\frac{u}{v}\right)' = \left(\frac{u'v - v'u}{v^2}\right)$,对 γ_1 求1阶导数:

$$\gamma_{1}^{\prime} = \left\{ L |h_{1r}|^{2} |h_{2r}|^{2} \left(|h_{11}|^{2} |h_{1i}|^{2} + \sigma_{1}^{2} |h_{1i}|^{2} + |h_{12}|^{2} |h_{1i}|^{2} - |h_{1r}|^{2} |h_{2r}|^{2} - \sigma_{r}^{2} |h_{1r}|^{2} \right) \alpha^{L+1} - (L+1) |h_{1r}|^{2} |h_{2r}|^{2} \left(|h_{11}|^{2} |h_{1i}|^{2} + \sigma_{1}^{2} |h_{1i}|^{2} + |h_{12}|^{2} |h_{1i}|^{2} \right) \alpha^{L} + |h_{1r}|^{2} |h_{2r}|^{2} \left(|h_{11}|^{2} |h_{1i}|^{2} + \sigma_{1}^{2} |h_{1i}|^{2} + \sigma_{1}^{2} |h_{1i}|^{2} \right) - |h_{12}|^{2} |h_{1i}|^{2} \sigma_{r}^{2} |h_{1r}|^{2} \right\} \\ / \left[|h_{1r}|^{2} |h_{2r}|^{2} \alpha^{L+1} + |h_{1r}|^{2} \alpha \sigma_{R}^{2} + |h_{1i}|^{2} (1 - \alpha) \left(\sigma_{1}^{2} + |h_{11}|^{2} \right) \right]^{2}$$
(22)

 γ_1 的分母为平方形式,必定大于0,因此只需求解分子的最优解即可。令分子为 $g(\alpha)$,有

$$y_{1n}(i) = n'_{1}(t) = h_{1r} \sum_{j=1}^{\infty} |\beta h_{li}|^{j-1} \beta n_{R}(i-j) + n_{1}(i)$$
(13)

噪声信号能量表达式为

$$P_{1n} = |y_{1n}(i)|^2 = \frac{|h_{1r}|^2 \beta^2 \sigma_R^2}{1 - |\beta h_{\rm hi}|^2} + \sigma_1^2$$
(14)

结合式(10)、式(12)、式(14),可得*S*1节点处的信 干噪比γ₁为

$$g(\alpha) = L |h_{1r}|^{2} |h_{2r}|^{2} \left(|h_{11}|^{2} |h_{li}|^{2} + \sigma_{1}^{2} |h_{li}|^{2} + |h_{12}|^{2} |h_{li}|^{2} - |h_{1r}|^{2} |h_{2r}|^{2} - \sigma_{r}^{2} |h_{1r}|^{2} \right) \alpha^{L+1} - (L+1) |h_{1r}|^{2} |h_{2r}|^{2} \left(|h_{11}|^{2} |h_{li}|^{2} + \sigma_{1}^{2} |h_{li}|^{2} + |h_{12}|^{2} |h_{li}|^{2} \right) \alpha^{L} + |h_{1r}|^{2} |h_{2r}|^{2} \left(|h_{11}|^{2} |h_{li}|^{2} + \sigma_{1}^{2} |h_{li}|^{2} - |h_{12}|^{2} |h_{li}|^{2} \sigma_{r}^{2} |h_{1r}|^{2} \right) \alpha^{L}$$
(23)

式(23)是α的L次方程,在实际应用场景,如 802.11a协议中,OFDM的循环前缀长度为16,在 该协议中相应的L的最大取值为15。其他场景中循 环前缀的取值也通常为两位数,所以无法直接求得 式(23)的解。

因此,本节的处理方式为先对 $g(\alpha)$ 求1阶导数,利用导数分析 $g(\alpha)$ 的函数特性,1阶导数 $g'(\alpha)$ 表达式为

$$g'(\alpha) = |h_{1r}|^2 |h_{2r}|^2 L (L+1) \alpha^{L-1} \left[\left(|h_{1i}|^2 |h_{12}|^2 + |h_{1i}|^2 \sigma_1^2 - |h_{1r}|^2 |h_{2r}|^2 - |h_{12}|^2 \sigma_r^2 \right) \alpha - |h_{1i}|^2 |h_{12}|^2 + |h_{1i}|^2 \sigma_1^2 \right]$$
(24)

已知0 < α < 1,可得 $g'(\alpha)$ 在 α 取值范围内恒 小于零,由此可知 $g(\alpha)$ 在定义域内为单调递减函 数。又因为g(0) > 0,g(1) < 0,所以在定义域 0 < α < 1 内必存在 $g(\alpha) = 0$ 的解。可以用二分 法、牛顿法等最优解求解方法获得 $g(\alpha) = 0$ 的解, 以二分法为例,求解过程如下:

第1步 取a为 α 最小值,b为 α 最大值,即 a = 0, b = 1, $\langle \alpha_{\text{temp}} = (a+b)/2;$

第2步 将 α_{temp} 代入式(23),判断 $g(\alpha_{temp})$ 是 否为零,若为零,则最佳放大因子 $\alpha_{opt} = \alpha_{temp}$, 结束计算,否则执行第3步;

第3步 若 $g(\alpha_{\text{temp}}) > 0 则 令 a = \alpha_{\text{temp}}$,若 $g(\alpha_{\text{temp}}) < 0$,则 令 $b = \alpha_{\text{temp}}$,重新计算 $\alpha_{\text{temp}} = (a+b)/2$,并返回第2步。

将 α_{opt} 代入 $\beta = \sqrt{\alpha/|h_{ii}|^2}$ 可得最佳中继放大因 子 β_{opt} ,将此最佳中继放大因子用于中继,既满足 非震荡条件,又可实现中继等效信道方案,消除 *L*径内的中继剩余环路干扰形成的符号拖尾,且源 节点处接收信号能有最佳的信干噪比表现。本节通 过系统信干噪比最大化确定中继最佳放大因子,根 据香农定理*C*= $Blog_2(1 + SNR)$,采取最大化容量 方式来确定中继最佳放大因子与通过系统信干噪比 来确定中继最佳放大因子是类似的。

4 仿真与分析

第3节中提出了等效多径方案和最佳放大因子 方法来对抗中继中无限迭代的剩余自干扰信号,并 通过最大化系统信干噪比确定最佳放大因子。本节 将对前文所提的中继等效多径方案与最佳放大因子 方法进行仿真,与现有的方法进行对比,验证本文 所提方案的传输性能。

本节选用文献[12]、文献[13]所提方案作为对比 方案。文献[12]中,在中继经过空域和模拟域的自 干扰消除后,剩余的环路自干扰当作噪声处理;文 献[13]中,利用单载波频域均衡(SC-FDE)技术的循 环前缀,构建等效虚拟多径来消除剩余环路自干扰 信号的拖尾部分。本节将对本文所提中继等效信道 方案及最佳中继放大因子方法、半双工双向中继传 输方案(以下简称半双工方案)、文献[12]所提方案 (以下简称Wichman方案)、文献[13]所提方案(以下 简称SC-FDE方案)这4种方案的系统误码率性能进 行仿真和对比分析,验证中继等效信道传输方案的 可靠性和中继最佳放大因子方法的合理性。

本文的仿真条件如下:假设所有节点间的信 道、剩余环路自干扰信道均为瑞利平坦衰落信道, 其中,中继节点与源节点之间的平均信道衰落为 20 dB,即 $|h_{1r}|^2 = |h_{2r}|^2 = 20$ dB,两个源节点之间 的平均信道衰落为40 dB,即 $|h_{12}|^2 = 40$ dB。为了 保证全双工和半双工中继系统在相同频谱效率条件 下进行性能对比,全双工中继系统使用QPSK调制 方式,半双工中继系统使用16-QAM调制方式,OFDM 数据块的长度N = 128,循环前缀的长度 $L_{CP} = 32$, 中继等效多径的长度L = 31。令 $\sigma_1^2 = \sigma_2^2 = \sigma_R^2$,发 射信号功率归一化,即 $P_{S1} = P_{S2} = 1$,中继节点和 源节点处信噪比分别为SNR $_R = P_R/\sigma_R^2$,SNR $_i = P_{Si}/\sigma_i^2$,i = 1, 2,且SNR $_1 = SNR_2 = SNR_R$,仿真中系 统误码率为两个源节点合并计算的平均误码率。

图4为全双工双向中继传输中不同方案误码率 性能随信噪比变化曲线。其中,两个源节点剩余环 路干扰抑制为50 dB,中继节点剩余环路自干扰抑 制为40 dB。

(1)对比"最佳放大因子方法"和"遍历获得的最佳传输"两条曲线。"最佳放大因子方法"曲 线为用3.2节中中继最佳放大因子求解方法求得的 解作为放大因子得到的系统误码率曲线,"遍历获 得的最佳传输"曲线为遍历0到1中步长为0.001的 所有放大因子,取误码率最佳的情形所绘制的曲 线。观察仿真图可发现这两条误码率曲线几乎重 合,由此可以验证最佳中继放大因子求解方法获得

解为最优解。

(2) "最佳放大因子方法"曲线在SNR为45 dB 时开始出现平底,双向传输时,源节点处有剩余自 干扰信号的存在。仿真中设置的源节点剩余环路自 干扰为50 dB,当信噪比大于50 dB时,对误码率 性能起主要影响作用的将是剩余环路自干扰信号。

(3) 对比"最佳放大因子方法"和"半双工方 案"两条曲线。在低信噪比(小于46 dB)情形下, 全双工中继传输具有更好的性能,在高信噪比情形 下,由于节点剩余自干扰的影响,全双工中继传输 方案性能遇到瓶颈,不及半双工传输方案。因此全 双工双向中继传输方案中,对于源节点的剩余环路 自干扰的抑制也尤为重要。

(4) 对比"最佳放大因子方法"和"Wichman 方案"两条曲线,本文所提出的方案利用中继等效 信道和最佳放大因子策略,将中继剩余自干扰当成 有用信号处理。而Wichman方案中,中继剩余自 干扰信号作为干扰信号处理,因此本文所提方案在 具有更好的误码率性能。

(5) 在文献[13]中,作者基于单载波频域均衡 技术,利用等效多径方案进行剩余自干扰抑制,本 文将该方法用于OFDM传输技术中,并利用二分法 求得更精确的最佳放大因子。对比"最佳放大因子 方法"和"SC-FDE方案"两条曲线,本文所提方 案的误码率性能相比于SC-FDE方案具有更好的 表现。

图5为全双工双向中继传输中不同方案误码率随中继节点剩余环路自干扰变化曲线,仿真条件为 SNR₁ = SNR₂ = SNR_R=30 dB。从图中可以看出, 当环路剩余自干扰低于约-20 dB时,本文所提的方 案比半双工双向传输有更佳的误码率性能。在相同 的SNR和剩余环路自干扰抑制水平下,本文所提方 案始终优于"Wichman方案"和"SC-FDE方案"。

图 5 全双工双向中继传输中不同方案误码率随中 继节点剩余环路干扰变化曲线

5 结束语

本文通过对全双工双向中继传输模型的分析, 针对中继剩余自干扰信号无限迭代的现象,提出等 效多径方案,利用OFDM抗多径原理降低中继剩余 环路自干扰的影响,并利用数学推导证明该方案的 可行性。在此方案基础上,基于最大化系统信干噪 比推导出中继最佳放大因子的求解方法,并通过仿 真分析其正确性和性能上的优越性。最终得出结 论,本文所提的中继等效信道方案和最佳中继放大 因子方法在全双工双向中继传输系统中,相比于半 双工方案、"Wichman方案"、"SC-FDE方案" 都具有更好的系统性能。

参 考 文 献

- SENDONARIS A, ERKIP E, and AAZHANG B. User cooperation diversity—Part I: System description[J]. *IEEE Transactions on Communications*, 2003, 51(11): 1927–1938. doi: 10.1109/TCOMM.2003.818096.
- [2] SENDONARIS A, ERKIP E, and AAZHANG B. User cooperation diversity—Part II: Implementation aspects and performance analysis[J]. *IEEE Transactions on Communications*, 2003, 51(11): 1939–1948. doi: 10.1109/ TCOMM.2003.819238.
- [3] KUMAR N, SINGYA P K, and BHATIA V. Performance analysis of orthogonal frequency division multiplexing-based cooperative amplify-and-forward networks with non-linear power amplifier over independently but not necessarily identically distributed Nakagami-*m* fading channels[J]. *IET Communications*, 2017, 11(7): 1008–1020. doi: 10.1049/ietcom.2016.0797.
- [4] NADERI S, JAVAN M R, and AREF A. Secrecy outage analysis of cooperative amplify and forward relaying in device to device communications[C]. 24th Iranian Conference on Electrical Engineering, Shiraz, Iran, 2016:

 $40-44.\ {\rm doi:}\ 10.1109/{\rm IranianCEE.2016.7585386}.$

- [5] BOUTEGGUI M and MERAZKA F. Performance of source transmit antenna selection for MIMO cooperative communication system based DF protocol: Symbol error rate and diversity order[C]. International Conference on Wireless Networks and Mobile Communications (WINCOM), Rabat, Morocco, 2017: 1–8. doi: 10.1109/ WINCOM.2017.8238193.
- [6] SHARMA S, ROY S D, and KUNDU S. Two way secure communication with two half-duplex DF relay[C]. TENCON 2017: IEEE Region 10 Conference, Penang, Malaysia, 2017: 869–874. doi: 10.1109/TENCON.2017.8227980.
- [7] ATAPATTU S, HE Yuanyuan, DHARMAWANSA P, et al. Impact of residual self-interference and direct-link interference on full-duplex relays[C]. 2017 IEEE International Conference on Industrial and Information Systems (ICHS), Peradeniya, SriLanka, 2017: 1–6. doi: 10.1109/ICHNFS.2017.8300378.
- [8] WATKINS G T, THOMPSON W, and HALLS D. Single antenna full duplex cancellation network for ISM band[C].
 2018 IEEE Radio and Wireless Symposium (RWS), Anaheim, USA, 2018: 21-24. doi: 10.1109/RWS.2018.
 8304935.
- [9] DUARTE M and SABHARWAL A. Full-duplex wireless communications using off-the-shelf radios: Feasibility and first results[C]. the Forty Fourth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2010: 1558–1562. doi: 10.1109/ACSSC.2010.5757799.
- [10] DUARTE M, DICK C, and SABHARWAL A. Experimentdriven characterization of full-duplex wireless systems[J]. *IEEE Transactions on Wireless Communications*, 2012, 11(12): 4296–4307. doi: 10.1109/TWC.2012.102612.111278.
- [11] RIIHONEN T, WERNER S, and WICHMAN R. Mitigation of loopback self-interference in full-duplex MIMO relays[J]. *IEEE Transactions on Signal Process*, 2011, 59(12):

5983–5993. doi: 10.1109/TSP.2011.2164910.

- [12] RIIHONEN T, WERNER S, and WICHMAN R. Optimized gain control for single-frequency relaying with loop interference[J]. *IEEE Transactions on Wireless Communications*, 2009, 8(6): 2801–2806. doi: 10.1109/ TWC.2009.080542.
- [13] LIU Yi, DAI Yue, and XIA Xianggen. SC-FDE based fullduplex relay communication robust to residual loop interference[J]. *IEEE Wireless Communications Letters*, 2017, 6(4): 538-541. doi: 10.1109/LWC.2017.2713381.
- [14] JIN Yuansheng, XIA Xianggen, and CHEN Yan. Fullduplex delay diversity relay transmission using bitinterleaved coded OFDM[J]. *IEEE Transactions on Communications*, 2017, 65(8): 3250-3258. doi: 10.1109/ TCOMM.2017.2704109.
- [15] LIU Yi, XIA Xianggen, and ZHANG Hailin. Distributed space-time coding for full-duplex asynchronous cooperative communications[J]. *IEEE Transactions on Wireless Communications*, 2012, 11(7): 2680–2688. doi: 10.1109/ TWC.2012.060212.112214.
- [16] LIU Yi, XIA Xianggen, and ZHANG Hailin. Distributed linear convolutional space-time coding for two-relay fullduplex asynchronous cooperative networks[J]. *IEEE Transactions on Wireless Communications*, 2013, 12(12): 6406-6417. doi: 10.1109/TWC.2013.102313.130541.
- 刘 毅: 男,1978年生,教授,研究方向为宽带无线通信技术、空时编码与协作通信技术、通信对抗.
- 吴 炯:男,1992年生,硕士生,研究方向为宽带无线通信技术、 全双工通信技术.
- 杨 普: 男,1995年生,硕士生,研究方向为宽带无线通信技术、 全双工通信技术.
- 南海涵: 男,1996年生,硕士生,研究方向为宽带无线通信技术、 全双工通信技术.
- 张海林: 男, 1963年生, 教授, 研究方向为宽带无线通信技术.